The Erlang-R Queue: Time-Varying QED Queues with Reentrant Customers in Support of Healthcare Staffing

Galit Yom-Tov Avishai Mandelbaum

Industrial Engineering and Management
Technion

MSOM Conference, June 2010
The Problem Studied

Problems in Emergency Departments:

- Hospitals do not manage patients flow.
- Long waiting times in the ED for physicians, nurses, and tests.
 => Deterioration in medical state.
- Patients leave ED without being seen or abandon during their stay.
 => Patient return in severe state.

We use **Service Engineering** approach to reduce these effects.
Can we determine the **number of physicians (and nurses)** needed to improve patients flow, and control the system in balance between service quality and efficiency?
Standard assumption in service models: service time is continuous.
But we find systems in which: service is dis-continuous and customers re-enter service again and again.

What is the appropriate staffing procedure?
What is the significance of the re-entering customers?
What is the implication of using simple Erlang-C models for staffing?
Standard assumption in service models: service time is continuous.
But we find systems in which: service is dis-continuous and customers re-enter service again and again.

What is the appropriate staffing procedure?
What is the significance of the re-entering customers?
What is the implication of using simple Erlang-C models for staffing?
Related Work

Mandelbaum A., Massey W.A., Reiman M.
Strong Approximations for Markovian Service Networks. 1998.

Massey W.A., Whitt W.
Networks of Infinite-Server Queues with Nonstationary Poisson Input. 1993.

Green L., Kolesar P.J., Soares J.
Improving the SIPP Approach for Staffing Service Systems that have Cyclic Demands. 2001.

Jennings O.B., Mandelbaum A., Massey W.A., Whitt W.
Server Staffing to Meet Time-Varying Demand. 1996.

Feldman Z., Mandelbaum A., Massey W.A., Whitt W.
The (Time-Varying) Erlang-R Queue:

- λ_t - Arrival rate of a time-varying Poisson arrival process.
- μ - Service rate.
- δ - Delay rate ($1/\delta$ is the delay time between services).
- p - Probability of return to service.
- s_t - Number of servers at time t.

Model Definition

The Erlang-R Queue

Motivation

The Erlang-R Queue

Results

Model Definition

Staffing Time-Varying Erlang-R Queue
Patients Arrivals to an Emergency Department

Galit Yom-Tov, Avishai Mandelbaum
The Erlang-R Queue
Staffing: Determine $s_t, t \geq 0$

- Based on the QED-staffing formula:

$$s = R + \beta \sqrt{R}, \quad \text{where } R = \lambda E[S]$$

- In time-varying environments: $s(t) = R(t) + \beta \sqrt{R(t)}$, where β is chosen according to the steady-state QED.

- Two approaches to calculate the time-varying offered load ($R(t)$):
 - **PSA / SIPP (lag-SIPP)** - divide the time-horizon to planning intervals, calculate average arrival rate and steady-state offered-load for each interval, then staff according to steady-state recommendation (i.e., $R(t) \approx \bar{\lambda}(t)E[S]$).
 - **MOL/IS** - assuming no constraints on number of servers, calculate the time-varying offered-load. For example, in a single service system:

$$R(t) = E[\int_{t-S_e}^t \lambda(u)du] = E[\lambda(t - S_e)]E[S].$$
Staffing: Determine s_t, $t \geq 0$

- Based on the QED-staffing formula:
 \[s = R + \beta \sqrt{R}, \quad \text{where } R = \lambda E[S] \]

- In time-varying environments: $s(t) = R(t) + \beta \sqrt{R(t)}$, where β is chosen according to the steady-state QED.

- Two approaches to calculate the time-varying offered load ($R(t)$):
 - **PSA / SIPP (lag-SIPP)** - divide the time-horizon to planning intervals, calculate average arrival rate and steady-state offered-load for each interval, then staff according to steady-state recommendation (i.e., $R(t) \approx \bar{\lambda}(t)E[S]$).
 - **MOL/IS** - assuming no constraints on number of servers, calculate the time-varying offered-load. For example, in a single service system:
 \[R(t) = E[\int_{t-S_e}^{t} \lambda(u)du] = E[\lambda(t - S_e)]E[S]. \]
Motivation

The Erlang-R Queue

Results

Model Definition

Staffing Time-Varying Erlang-R Queue

Staffing: Determine $s_t, t \geq 0$

- Based on the QED-staffing formula:
 \[s = R + \beta \sqrt{R}, \quad \text{where } R = \lambda E[S] \]

- In time-varying environments: $s(t) = R(t) + \beta \sqrt{R(t)}$, where β is chosen according to the steady-state QED.

- Two approaches to calculate the time-varying offered load ($R(t)$):
 - **PSA / SIPP (lag-SIPP)** - divide the time-horizon to planning intervals, calculate average arrival rate and steady-state offered-load for each interval, then staff according to steady-state recommendation (i.e., $R(t) \approx \bar{\lambda}(t)E[S]$).
 - **MOL/IS** - assuming no constraints on number of servers, calculate the time-varying offered-load. For example, in a single service system:
 \[R(t) = E[\int_{t-S_e}^{t} \lambda(u) du] = E[\lambda(t - S_e)]E[S]. \]
The Offered-Load

Offered-Load in Erlang-R = The number of busy servers (or the number of customers) in a corresponding \((M_t/M/\infty)^2\) network.

Theorem: (Massey and Whitt 1993)

\[R(t) = (R_1(t), R_2(t)) \] is determined by the following expression:

\[R_i(t) = E[\lambda_i^+(t - S_{i,e})]E[S_i] \]

where,

\[\lambda_1^+(t) = \lambda(t) + E[\lambda_2^+(t - S_2)] \]
\[\lambda_2^+(t) = pE[\lambda_1^+(t - S_1)] \]

Theorem:

If service times are exponential, \(R(t) \) is the solution of the following Fluid ODE:

\[\frac{d}{dt}R_1(t) = \lambda_t + \delta R_2(t) - \mu R_1(t), \]
\[\frac{d}{dt}R_2(t) = p\mu R_1(t) - \delta R_2(t). \]
Case Study: Sinusoidal Arrival Rate

Periodic arrival rate: $\lambda_t = \bar{\lambda} + \bar{\lambda}\kappa \sin(\omega t)$.

$\bar{\lambda}$ is the average arrival rate, κ is the relative amplitude, and ω is the frequency.
Case Study: Sinusoidal Arrival Rate

Simulation of $P(Wait)$ for various β ($0.1 \leq \beta \leq 1.5$)

Performance measure is stable! ($0.15 \leq P(Wait) \leq 0.85$)
Case Study: Sinusoidal Arrival Rate

Relation between $P(\text{wait})$ and β fits steady-state theory!
Case Study: Sinusoidal Arrival Rate

Simulation results of servers’ utilization for various β

Performance measure is stable! ($0.85 \leq Util \leq 0.98$)
Using Erlang-C’s \(R(t) \), does not stabilize systems’ performance.
Why Erlang-C Does Not Fit Re-entrant Systems?

Compare R(t) of Erlang-C and Erlang-R:

Erlang-C offered-load (with concatenated services):

\[
R(t) = E \left[\lambda \left(t - \frac{1}{1 - p} S_{1,e} \right) \right] E \left[\frac{1}{1 - p} S_1 \right]
\]

Erlang-R offered-load:

\[
R_1(t) = E \left[\sum_{i=1}^{\infty} p^i \lambda \left(t - S_{1,e}^i - S_{2,e}^i - S_1,e \right) \right] E[S_1]
\]

![Diagram](image)
Erlang-C under- or over-estimates the Erlang-R offered-load.
Comparison between Erlang-C and Erlang-R

Theorem:
The ratio of amplitudes between Erlang-R and Erlang-C is given by

\[\sqrt{\frac{(\delta^2 + \omega^2)\left((1 - p)\mu^2 + \omega^2\right)}{((\mu - i\omega)(\delta - i\omega) - p\mu\delta)((\mu + i\omega)(\delta + i\omega) - p\mu\delta)}} \]

Plot of amplitudes ratio as a function of \(\omega \)
Erlang-R over-estimate the amplitude of the offered-load. The re-entrant patients stabilize the system. Minimum ratio achieved when: $\omega = \sqrt{\delta \mu (1 - p)}$ (for example ED).
Comparison between Erlang-C and Erlang-R

Plot of the ratio of phases as a function of ω

Erlang-C under- or over-estimates the time-lag.
Comparison between Erlang-C and Erlang-R

Erlang-C under- or over-estimates this time-lag depending on the period's length.

\[\lambda = 30, \mu = 1, \delta = 0.5, p = \frac{2}{3}, \text{cycles per day} = 1 \]

\[\lambda = 30, \mu = 1, \delta = 0.5, p = \frac{2}{3}, \text{cycles per day} = 4 \]
Small systems - Hospitals

Small systems: No of doctors range from 1 to 5

Constraints:
- Staffing resolution: 1 hour
- Minimal staffing: 1 doctor per type
- Integer values: \(s(t) = [R_1(t) + \beta \sqrt{R_1(t)}] \)

Example: \(R = 2.75 \)

<table>
<thead>
<tr>
<th>(\beta) range</th>
<th>s</th>
<th>(P(W > 0))</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0, 0.474]</td>
<td>3</td>
<td>82.4%</td>
</tr>
<tr>
<td>(0.474, 1.055]</td>
<td>4</td>
<td>34.0%</td>
</tr>
<tr>
<td>(1.055, 1.658]</td>
<td>5</td>
<td>11.4%</td>
</tr>
<tr>
<td>(1.658, 2.261]</td>
<td>6</td>
<td>3.0%</td>
</tr>
<tr>
<td>1.658 and up</td>
<td>7</td>
<td>0%</td>
</tr>
</tbody>
</table>

\(=> \) Can not achieve all performance levels!
Small systems - Hospitals

P(Wait) is stable and separable!
Conclusions

In time-varying systems where patients return for multiple services:

1. Using the MOL (IS) algorithm for staffing stabilizes performance.
2. Re-entrant patients stabilize the system.
3. Using single-service models, such as Erlang-C, is problematic in the re-entrant ED environment:
 - Time-varying arrivals
 - Transient behavior even with constant parameters
What next?

- Fluid and diffusion approximations for mass-casualty events
- QED - MOL approximations for the processes:
 - Number of customers in system
 - Virtual waiting time
- Extension: upper limit on the number of customers within the system
Motivation

The Erlang-R Queue

Results

Case Study
Analyzing of the offered load function

What next?

The semi-open Erlang-R queue

Does MOL approximation works? yes, stabilizing performance is achieved.
Is it close to M/M/s/n model? no.

Erlang-R:

Closed Erlang-R:

IW model closed network:

Needy

Content

Delay

1-p

p

Arrivals

1

2

Arrivals: Needy:

Content:

Cleaning:

N beds

Patient is Needy

1-p

p

Patient is Content

Blocked patients

N

Galit Yom-Tov, Avishai Mandelbaum

The Erlang-R Queue
Thank You