An explanation to the proof of (1.6) in Fictitious Play for Games with Identical Interests*

July 2002
Proof of (1.6) in the paper:

Note that for \(s = t \) or \(s = t + 1 \), \(f(s) = (f^1(s), \ldots, f^n(s)) \), where \(f^i(s) \in \Delta^i \) is a vector, whose number of components equals the number of pure strategies of \(i \). That is, \(f^i(s) = (f^i(s)(y'))_{y' \in \mathcal{Y}^i} \). \(U \) is formally defined over \(f \in \Delta \). However, if you look for the definition of \(U \) at page 260, you can see that it is actually defined for every \(f = (f^1, f^2, \ldots, f^n) \), where \(f^i \) is a vector in \(R^{\mathcal{Y}^i} \). Hence, \(f^i \) can have coordinates that are above 1 or below zero. In the paper we assume without loss of generality that \(\max_{f \in \Delta} U(f) \leq 2^{-n} \); this assumption is ok because we can always multiply \(U \) by a positive constant, and \(\Delta \) is a compact set (i.e., \(U \) is bounded on \(\Delta \)). However, to get (1.6) we actually need another assumption:

\[
\max_{f \in \Delta} U(f) \leq 1, \tag{1}
\]

Where \(\Delta \) is the set of all \(h = (h^1, h^2, \ldots, h^n) \) for which for every \(i \), \(h^i \in \Delta^i \) or \(h^i = f^i - g^i \), where \(f^i, g^i \in \Delta^i \). Since \(\Delta \) is also compact, there is no problem in this assumption.

Obviously, \(U \) is multi-linear (that is, it is linear in each coordinate separately). For example:

\[
U(\alpha f^1 + \beta g^1, f^2, \ldots, f^n) = \alpha U(f^1, f^2, \ldots, f^n) + \beta U(g^1, f^2, \ldots, f^n). \tag{2}
\]

Note therefore that \(U(f^1 + g^1, f^2 + g^2, \ldots, f^n + g^n) \) is the sum of \(2^n \) factors. Formally:

\[
U(f^1 + g^1, f^2 + g^2, \ldots, f^n + g^n) = \sum_{\{S\} \in 2^{\mathcal{N}}} U(h^1_S, \ldots, h^n_S), \tag{3}
\]

where \(h^i_S = f^i \) if \(i \in S \), and \(h^i_S = g^i \) if \(i \notin S \), and \(2^{\mathcal{N}} \) denotes the class of all \(2^n \) subsets of \(\mathcal{N} = \{1, \ldots, n\} \).

Recall now that by (1.2) in the paper,

\[
f^i(t + 1) = f^i(t) + \beta_t g^i(t), \tag{4}
\]
where
\[g^i(t) = y^i(t + 1) - f^i(t) \quad \text{and} \quad \beta_t = 1/(t + 1). \] (5)

Hence,
\[U(f^1(t + 1), ..., f^n(t + 1)) = U(f^1(t) + \beta_t g^1(t), ..., f^n(t) + \beta_t g^n(t)). \] (6)

Apply (3) to the right-hand-side of (6) to express it as the sum of \(2^n \) factors. One of this factors is \(U(f) = U(f^1, ..., f^n); \) There are exactly \(n \) factors in which \(n - 1 \) coordinates are of the type \(f^i(t) \) and one coordinate is of the type \(\beta_t g^i(t) \). For example, if \(n = 3 \), the \(n \) factors are:
\[U(\beta_t g^1(t), f^2(t), f^3(t)), U(f^1(t), \beta_t g^2(t), f^3(t)), \text{and} U(f^1(t), f^2(t), \beta_t g^3(t)). \]

Use (5) to write each \(g^i(t) \) as a difference of two expressions, and use the multi-linearity of \(U \) for each of these \(n \) factors. This will give you the first summand at the right-hand-side of (1.6) in the paper. In all other factors, \(1/(t + 1) \) is appearing at least twice. Using the multi-linearity, each of these factors has the form \(1/(t + 1)^k U(h^1, h^2, ..., h^n), \) where \(k \geq 2 \), and each \(h^i \) is either in \(\Delta^i \) or it has the form \(h^i = s^i - t^i \), where each of \(s^i \) and \(t^i \) is in \(\Delta^i \). That is, \(h = (h^1, h^2, ..., h^n) \) \(\in \bar{\Delta} \). As there are less than \(2^n \) factors of this form, assumption (1) and the fact that \(1/(t + 1)^k \leq 1/(t + 1)^2 \) for every \(k \geq 2 \) yields (1.6) in the paper.