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Previous experimental studies have documented quick convergence to equilib-
rium play in market entry games with a large number of agents. The present study
examines the effect of the available information in a 12-player game in an attempt
to account for these findings. In line with the prediction of a simple reinforcement
learning model (Roth and Erev, 1995, Games Econ. Behav. 8, 164-212), quick
convergence to equilibrium is observed even given minimal information (unknown
payoff rule). However, in violation of the basic model, information concerning
other players’ payoff increases the number of entrants. The information effect can
be described by a variant of the basic reinforcement learning model assuming that
the additional information changes the player’s reference point. Journal of Eco-
nomic Literature Classification Numbers: C7, C92.  © 1998 Academic Press

Whereas many experimental studies of noncooperative game theory
suggest that the Nash equilibrium solution does not provide an accurate
description of human interactive decisions (e.g., Kagel and Roth, 1995;
Camerer, 1990), several recent studies (Kahneman, 1988; Rapoport, 1995;
Rapoport et al., in press; Sundali ef al., 1995) have shown that interactive
decisions in a class of market entry games with a relatively large number of
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agents are accounted for surprisingly well by the equilibrium solution. To
Kahneman, who seemed to be bewildered by the results, the behavioral
regularities found in this game looked “like magic” (Kahneman, 1988,
p. 12). Subsequent studies of the market entry game by Rapoport and his
associates, which systematically manipulated the information structure of
the game and the domain of payoffs (gains vs. losses), have shown that this
“magic” is robust. Under a wide variety of experimental conditions,
interacting players in large groups playing the market entry game with no
communication rapidly achieve a degree of tacit coordination, which is
accounted for on the aggregate level by the Nash equilibrium solution.

Dozens of studies have examined interactive behavior in situations that
facilitate deviations from rational play (e.g., experimental studies of the
Prisoner’s Dilemma, the two-person ultimatum bargaining game, and the
Centipede game). In contrast, considerably fewer experimental studies
have examined the structural and contextual (Crawford, 1995) principles
that induce interactive behavior to converge to equilibrium. The present
study focuses on the regularities observed in the market entry game in an
attempt to understand the process that leads aggregate decisions to equi-
librium. In particular, it tests the general hypothesis that the results of
several market entry games can be accounted for by an adaptive learning
model recently proposed and extensively tested by Roth and Erev (Roth
and Erev, 1995, and Erev and Roth, in press).

Rapoport et al. (in press) have shown that the Roth—Erev model can be
extended to account for the market entry game’s results. They have
considered games in which the market size changes randomly from period
to period, and they found that, with two additional assumptions, the
Roth—Erev model can reproduce major features of their experimental
results. The present study considers a different experimental design in
which the market capacity is held constant across all periods. By manipu-
lating the information structure in a between-subjects design, it provides a
more stringent test of the Roth—Erev reinforcement learning model.

Several issues are addressed in the present research. We first examine
whether a simple two-strategy reinforcement learning process (the Roth—
Erev basic model without any modifications) can result in convergence to
equilibrium in the market entry game. Computer simulations of the
learning model indicate that the answer to this question is positive.

We then describe in detail a controlled experiment specifically designed
to explore the main differences between the predictions of the reinforce-
ment-based learning model and human behavior. The results of this
experiment show that the basic two-strategy learning model provides a
good approximation to the aggregate results. However, information about
other players’ payoff, that should have no effect according to the
Roth—Erev model, does influence behavior in this experiment. Model
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comparisons suggest that this effect can be described by the assumption
that information concerning other player’s payoff affects the classification
of the reinforcements as “positive” or “negative.” The information effect
might also be explained by an assumption that subjects use imitation and
best reply rule, but the support for this view in the current data is weak.
The final section considers general implications and then applies the
original and new variant of the adaptive learning model to the results of
previous market entry studies and similar step-level public good games.

MARKET ENTRY GAMES

In the class of games under investigation, each player must decide
privately and anonymously whether to enter a certain market. The player’s
payoff is the difference between two components: market profit and entry
costs. The game is symmetric with respect to the market profits, but entry
costs may differ from one player to another. Formally, using the terminol-
ogy of Selten and Glith (1982), we consider a noncooperative n-person
game in strategic form where each player i, i = 1,2,...,n, has two pure
strategies, namely, stay out or enter. In addition, each player i has entry
costs C,. It is further assumed that each player who enters the market
receives a payoff R, , and each player who stays out receives a payoff S,,,,
where m (0 < m < n) denotes the number of entrants.

Under these assumptions, the individual payoff function H, of player i
has the form

R, — C, if player i enters
if player stays out.

The term A,, = R,, — S,,_, is the incentive to enter. It is natural to
assume that A4, is a nondecreasing function of m: A, >4, > - > A4,.
This assumption means that the larger the number of entrants, the smaller
the incentive to enter the market.

As pointed out first by Selten and Glith and later by Gary-Bobo (1990),
the market entry game can be interpreted as the “truncation” or first stage
of a two-stage game of the following form. In the first stage of the game
(entry stage) the n players simultaneously choose either to stay out or
enter. The vector of n binary choices is then revealed to all n players. In
the second stage (supply stage) all the players who entered the market in
stage 1 simultaneously make some other decision (e.g., determine a supply
level in a Cournot game). If all the subgames in stage 2 have uniquely
defined equilibria, the market entry game is then obtained as a truncation
of the original two-stage game.
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The market entry game may be used to model asymmetric oligopolistic
market situations in which participating firms must make a preliminary
entry decision and then compete in the second stage. The linear Cournot
oligopoly model studied theoretically by Selten and Giith is one example,
as are other oligopoly models where prices, advertising expenditures, or
quality parameters are the decision variables. Another class of applications
includes two-stage processes where the first stage is an innovation rather
than an entry stage (Selten and Glith, 1982). In the first stage, each of n
suppliers can adopt a production method that saves labor but requires
investment costs. These costs may vary from one supplier to another as a
function of size, technical ability, and the R & D budget. The second-stage
subgame equilibria will depend on the number m of suppliers who have
adopted the new production technology in stage 1. Traffic problems
constitute yet another class of potential applications. In many countries
with heavily congested roads one faces a decision whether to take a train
(stay out) or drive a car (enter) from one destination to another. If the
train is spacious enough, the utility of choosing it is relatively fixed,
whereas the utility of traveling by car decreases with the number of cars on
the road (i.e., entrants).

Previous Research

Previous experimental studies of the market entry game examined a
special case with symmetric players, zero entry costs, and an incentive to
enter the market that decreases linearly in the number of entrants. In all
of these studies, R,, assumed the form

R, =1+2(c—m),

where ¢(0 <c¢ <n) is a fixed and known constant interpreted as the
“market capacity.” Individual entry costs and payoff for staying out were
set at constant values:

C.=0 forall i

1

and

S v for all m.

m

In the two studies of Sundali ez al. (1995) the (constant) payoff for staying
out was set at v = 1. Rapoport et al. (in press) set v at some either
relatively large positive or negative value. Thus, the payoff function in all
of these studies assumed the form

- v if stay out
1+ 2(c —m) if enter.
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In all of these studies, communication before or during the game was
prohibited. The stage game was iterated for T' periods. A special charac-
teristic of these previous studies, not shared by the present study, is that
the market capacity value ¢ was varied randomly from period to period. In
particular, once some value of ¢ was displayed on the computer terminal,
each of the n subjects made her decision whether or not to enter privately
and anonymously. When all the subjects entered their decisions, the
computer terminal displayed the number of entrants (), the individual
payoff (H,), and the accumulated payoff of subject i from the beginning of
the experiment. Then a new stage game started with a different randomly
chosen value of c¢. Altogether, 10 different values of ¢ were displayed in a
random order in each block of 10 periods. The same values of ¢ were then
iterated in a different random order on each of the subsequent blocks.
Each group of subjects completed 10 blocks of 10 periods each for a total
of T = 100 periods.

In Rapoport (1995) and Sundali et al. (1995) (and in the current study)
the payoff for staying out is set at v = 1. If v =1, then there are
n! /(c'(n — ¢)!) weak pure-strategy equilibria with ¢ entrants and n — ¢
nonentrants, as well as n! /((c — DI(n — ¢ + 1)!) weak pure-strategy equi-
libria with ¢ — 1 entrants and n — ¢ + 1 nonentrants. In addition, there is
a unique symmetric mixed-strategy equilibrium where, given the commonly
known value of ¢, each player enters with probability p(c) and stays out
with probability 1 — p(c), where

p(e) =(c=1/(n—-1).

It is easy to verify that ¢ — 1 < np(c) < c¢. Thus, whether pure or mixed-
strategy equilibria are used, the mean number of entrants should be
between ¢ and ¢ — 1.

The major findings of the previous studies can be briefly summarized.
Positive and highly significant correlations between the 10 pairs of ¢ and
m values were found on each block. For groups of n = 20 subjects, the
correlations were around 0.90. When several different groups of subjects
were combined (n = 60), the correlations increased to about 0.98. Rapid
convergence to the equilibrium was already achieved on the first block.
These highly regular and replicable results on the aggregate level were
observed together with large within-subjects variability in the decisions
across the 10 iterations of each ¢, and considerable between-subjects
variability in decision profiles that did not decrease with experience.
Systematic manipulation of the domain of payoffs, achieved by setting

These equilibria are inefficient (as total payoff is maximized when m = ¢/2). Coordina-
tion market games (with Pareto efficient equilibria) were studied by Ochs (1990) and Meyer
et al. (1992); see Ochs (1995b) for review.
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v = —10 and v = —6 (domain of losses) or v = 6 (domain of gains), did
not affect the results (Rapoport ez al., in press).

Although the values of m rapidly converged to ¢ or ¢ — 1 on the
aggregate level (when v = 1), no support was found for either the pure-
strategy or symmetrical mixed-strategy equilibria on the individual level. In
violation of the pure-strategy equilibrium prediction that implies static
decision policies, large within-subjects variability was observed. And in
violation of the symmetrical mixed-strategy equilibrium prediction, the
between-subjects standard deviations of number of entries for every value
of ¢ were always larger than (p(c)X(1 — p(c))n)*/?, the value predicted at
this equilibrium. In addition, in 20—-30% of all cases, the subject alternated
his /her decision for the same value of ¢ presented in successive blocks of
trials. Taken together, these results suggest the operation of some adaptive
learning process that, on the aggregate level, converges rapidly to the
equilibrium solution, while still allowing for changes in individual decisions
for the same market capacity presented several times as well as differences
between individual decision profiles.

THE ROTH-EREV ADAPTIVE LEARNING MODEL

The adaptive learning model of Roth and Erev is built upon a quantifi-
cation of Thorndike’s (1898) law of effect (similar quantifications were
suggested by Herrnstein, 1970, and Harley, 1981). The law of effect states
that good outcomes (reinforcements) associated with playing a particular
strategy increase the probability that this strategy will be chosen again. To
the basic quantification, Roth and Erev (1995) and Erev and Roth (1996)
added quantifications of three additional important characteristics of hu-
man and animal learning processes. For expository purposes, it is conve-
nient to present the basic quantification first. It can be described by the
following three assumptions:

Al. Initial propensities: At time ¢t = 1 (before any experience has
been acquired), each player i has an initial propensity to play his kth pure
strategy, given by some real number g,,(1).

A2. Reinforcements: If player i plays his kth pure strategy at time ¢
and receives a nonnegative payoff of x, then the propensity to play strategy
k is updated by setting

gu(t + 1) = qu(t) +x,
whereas for all other pure strategies j,

qij([ + 1) = Clij(t)-
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A3. Probabilistic response rule: The probability p, (¢) that player i
plays his kth pure strategy at time ¢ is given by

Pi(t) = qu (1) /Xq;(1),

where summation is taken over all of player i’s pure strategies j. Thus,
pure strategies which have been played and have met with success tend
over time to be played with greater frequency than those which have met
with failure.

The three additional characteristics of the learning process that were
explicitly modeled by Erev and Roth (1996) are generalization (and experi-
mentation), recency, and effect of reference points. These factors were
quantified in the following generalized version of assumption A2:

A2*. If player i plays his kth pure strategy at time ¢ and receives a
payoff of x, then the propensity to play any strategy j is updated by setting

g;(t +1) = max[v, (1-¢)g;(1) + Ek(j*Rz(x))]'

In assumption A2*, ¢ is a forgetting (or recency) parameter which slowly
reduces the importance of past experience, R is a function which trans-
lates payoffs into rewards, and E is a function which determines how the
experience of playing strategy k and receiving the reward R(x) is general-
ized to update each strategy j. (v > 0 is a technical parameter to ensure
that the propensities remain positive.)

Erev and Roth (1996) utilized empirical observations to determine the
shape of the reinforcement and generalization functions. Following Herrn-
stein’s (1961) demonstration of a linear relation between reinforcements
and choice probabilities, they set

R,(x) =x—p(1),

where p(t) is the reference point on trial z. Erev and Roth (1996) denoted
the reference point at the beginning of the experiment by p(1) and
assumed that the reference point is updated by the following linear
weighing function:

(L=w)p(t) + (w)x if x> p(t)

PUTL) =N ) p(e) + (w)x ifx < plt),

where w* and w~ are the weights assigned to positive and negative
reinforcements, respectively.
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For games with two pure strategies such as the present version of the
model, the generalization function is reduced to

R(x)(1—¢) ifj=k

E(J, R(x)) = R(x)e otherwise,

where 0 < ¢ < 0.5 is a generalization (and experimentation) parameter.

It is worth noticing that the Roth—Erev model makes no use of the
notion of best reply, which many adaptive learning models incorporate.
More important for our purpose, the model incorporates no other infor-
mation about the behavior and payoffs of the other players or the “social
history” of the game; as such, it is applicable in its present form to both
individual and interactive decision-making tasks. We exploit this property
in the variants of the market entry game studied below.

The Parameters of the Model

To reduce the number of parameters in their learning model, Erev and
Roth (1996) noted that under assumption A3 the initial propensity param-
eters can be written as

e =p,-k<1>[ T qi,m]-
j=1

Setting S(1) = X7, q;(t)/(X), where X is the game average outcome
given random decisions, and S(1) is defined as a ‘‘strength parameter,” the
task of determining the initial propensities is therefore reduced to the task
of determining S(1) and the initial choice probabilities. Uniform initial
choice probabilities are assumed in the present study.

After reducing the number of initial propensities, the general model
includes seven parameters? (&,v, ¢,S(1), p(1),w*, and w~). Erev and
Roth (1996) found that in the context of strategic games with unique mixed
strategy equilibrium in which players cannot reciprocate, the model’s
descriptive power is relatively insensitive to the exact values of the param-
eters. They found high correspondence (correlations above 0.9 and mean
squared deviations below 0.015) between predicted and observed learning
functions, given a wide set of parameters.

The present paper avoids the free parameter problem altogether by
utilizing the parameter set that minimized the distance between the model
predictions and the data in the study of Erev and Roth (1996). The exact

2The reference point’s parameters ( p(1), w*; and w~) and the technical parameter (v) are
needed to account for learning in the loss domain (and w~ has to exceed w™ to insure that
the power law of practice is satisfied); initial strength (S(1)) is needed to model initial
tendencies; and experimentation (¢) and recency (¢) parameters are required to allow
adaptation in a changing environment.
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values taken from Table 3 of Erev and Roth (1996) are S(1) = 3, ¢ = 0.2,
¢ = 0.001, p(1) =0, w"=0.01, w~= 0.02, and v = 0.0001. Whatever re-
sults we report below could only be improved by a judicious selection of
new parameter values.

Despite the relatively large number of parameters, the Roth—Erev
model is falisifiable. Erev and Roth (in press) noted that their basic model
has to be extended to account for behavior in games in which players can
reciprocate. For example, the basic model is violated by the observation
that players learn to reciprocate by alternating in a repeated Chicken
game (see Rapoport et al., 1976). Note that Chicken can be formulated as
an example of a two-person market entry game. The present paper focuses
on n-person games in which reciprocation is not possible.

THE EXPERIMENT

In all previous studies of the market entry game, the market capacity
was randomly varied from period to period. This design feature resulted in
a very complex market entry game in which the learning process is likely to
be affected by generalization from one market size to another. For
example, suppose that ¢ = 11 and m = 8 on period ¢. Then if ¢ = 7 on
period ¢ + 1, most players may attempt to exploit the departure from
equilibrium on trial ¢ by entering on ¢ = 7, thereby raising the number of
entrants above c. Other, possibly more farseeing players may anticipate
this “overreaction” and decide to stay out. Although the same situation
occurs if the same market capacity is presented on consecutive periods, the
effect of trial-to-trial variation in c is eliminated. Another characteristic of
the “random market size” design is related to the observability of the
learning process. As noted by Rapoport et al. (in press), this design
appears to lead the subjects to consider cutoff strategies, and even ran-
dom selection among strategies of this type can lead to equilibrium-like
behavior.

Therefore, to facilitate understanding of the adaptive learning process,
the present study focuses on a considerably simpler version of the market
entry game in which the market capacity is constant across iterations of
the stage game. In particular, our subjects played two market entry games
in a within-subjects design, one with ¢ =4 and the other with ¢ =8
(n = 12 in both games).

A second major departure from all previous studies was in our experi-
mental manipulation of the game’s information structure. Recall that in
the two studies by Sundali et al. (1995, Exp. 2) and Rapoport et al. (in
press), complete outcome feedback was provided at the end of each period
about the number of entrants, individual payoff for the period, and
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accumulated individual payoff from the beginning of the experiment. In
contrast, the information structure in the present study was systematically
degraded by withholding information about the payoff rule determining
individual payoffs and privatizing the individual payoff information. In
information Condition 3, the payoff rule was explained to the subjects and
individual payoffs were publicly displayed, as in the previous studies. In
Condition 2, individual payoffs were publicly displayed, as in Condition 3,
but no information about the payoff rule was given. Finally, in information
Condition 1 the payoff rule was not explained, as in Condition 2, and
information about individual payoff for the period was only privately given.
These three information conditions were presented in order to test an
important implication of the Roth—Erev adaptive learning model, which,
as mentioned above, does not consider the payoff rule and the public
nature of the payoff feedback, treating these three rather different condi-
tions as equivalent.

METHOD

Subjects

The subjects were 144 Israeli undergraduate students at the Technion.
They were recruited by campus advertisements promising monetary reward
for participation in a group decision-making task. The subjects participated
in the experiment in groups of n = 12; 4 groups participated in each of 3
information conditions for a total of 12 groups.

Procedure

Upon arrival at the laboratory, the subjects were seated in a single room
and were handed written instructions.®> The instructions explained that
each participant would earn 20 IS (about $7) for showing up at the
experiment and that he or she could either gain or lose more money
during the experiment. The exact payoff was said to depend on the
outcome of a (randomly determined) single round of play. Subjects were
told that in each round they would have to make a binary decision (choose
one of two states of an electrical switch).

The instructions for Condition 3 contained a detailed explanation of the
payoff rule. A description of the payoff rule was not provided to the
subjects in the other two conditions. In fact, subjects in these two latter
conditions did not receive any information that they were participating in a
noncooperative n-person game. (However, because they were seated to-

®Instructions to the subjects (translated from Hebrew) can be obtained from the first
author upon request.



156 EREV AND RAPOPORT

gether in the same room, the subjects might have deduced that their payoff
was affected in some way by the decisions of others.)

Each group of subjects played 20 rounds (iterations) of each of the two
12-person market entry games (one with ¢ = 4 and the other with ¢ = 8).
The presentation order of the two games was balanced across groups. The
number of rounds was not made known to subjects. Each subject had an
electrical switch controlling a light bulb on a board in front of the
experimenter. The subjects could not see the board. At the beginning of
each round subjects had 20 seconds to decide between their switch’s two
states (0 and 1). Whereas state “1” stood for entering the market, this rule
was only known to the subjects in Condition 3.

An outcome feedback was provided as follows. In Condition 3, the
experimenter announced the number of entrants and the exact payoffs. In
Condition 2, the experimenter only announced the payoff for each of the
two decisions. Finally, in Condition 1 each subject received private infor-
mation about his or her payoff.

At the end of each round of play, the subjects were given 10 seconds to
record their outcome. Following the last round, the round that determined
the actual payoff was randomly determined. Subjects were then debriefed,
paid, and dismissed individually from the laboratory.

RESULTS

We start by examining the implications of the Roth—Erev model for
short-term play of the market entry game. Because of the probabilistic
nature of the predicted response, which prohibits the derivation of closed-
form expressions, we revert to simulations (see, e.g., Bush and Mosteller,
1955). Five hundred different simulations were conducted to generate
mean learning functions. In each simulation, groups of 12 simulated
players (called ‘“stat-rats” by Bush and Mosteller) each played the market
entry game with market capacity of either ¢ = 4 or ¢ = 8. Each game was
played for only 20 rounds, mimicking the behavior of the real subjects.

On each round of the simulation play, the following steps were imple-
mented:

1. The stat-rats’ strategies were randomly determined in accordance
with assumption A3.

2. Individual payoffs were calculated in accordance with the game
payoff scheme.

3. Individual propensities were then updated, given the payoff for
the round, in accordance with assumption A2*.

4. The reference point for the next round was determined.
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Summary statistics of the simulation results are depicted in the left-hand
column of Fig. 1. The top panel (Fig. 1a) displays the mean number of
entrants. These results are shown in terms of four blocks of five rounds
each. Rapid convergence to equilibrium is clearly observed for both games
with ¢ = 4 and ¢ = 8.

Figure 1b portrays another summary statistic of the simulation results,
namely, the mean absolute deviation between the number of entrants and
the expected number of entrants under the symmetrical mixed-strategy
equilibrium solution (3.27 when ¢ = 4 and 7.64 when ¢ = 8). For both
games, the functions are seen to decrease with experience in accordance
with the results shown at the top panel. The down trend implies that
convergence to equilibrium occurs on the individual level, and it is not a
function of aggregation over individual simulations.

Figure 1c shows the probability of alternation between rounds ¢ and
t+ 1(t =1,2,...,19). Note that at the mixed-strategy equilibrium, the
expected probability of alternation is 1 — (7/11)? + (4/11)? = 0.456 for
c=28 and 1 — (3/11)? + (8/11)?> = 0.397 for ¢ = 4. In contrast, the ex-
pected probability of alternation under the pure-strategy equilibrium is
zero (unless subsets of size ¢ alternate in a systematic manner from round
to round). Clearly, the simulation results provide no support for the
pure-strategy equilibrium. It appears that the simulation reached a state
that is close to an asymmetrical mixed strategy equilibrium.

Is There * Learning-Free’’ Magic?

The simulation results presented in Fig. 1 suggest that the Roth—Erev
model is a sufficient explanation for the “magical” coordination in the
current setting. Yet, this explanation cannot account for Sundali et al.’s
(1995, Exp. 1) observation of good coordination even in the absence of
feedback (and, therefore, the possibility of learning). In Rapoport et al. (in
press), we hypothesized that this observation may be a characteristic of
Sundali et al.’s experimental design in which the market size changed every
trial. We argued that this design may induce subjects to use cutoff
strategies, and we showed that a uniform selection among cutoff strategies
leads to a near equilibrium behavior in Sundali et al.’s task. This explana-
tion implies that in the current “one market at a time” task, coordination
is less likely to occur before the players gain experience. To test this
assertion, we examined the outcome of the first period played in Condition
3 (known payoff rule). The results show no indication of coordination. In
fact, more players (25 of 48) chose to enter in game ¢ = 4 than in game
¢ = 8 (17 of 48). These results support Rapoport et al.’s hypothesis and the
view that coordination without learning is not a general phenomenon.
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FIG. 1. Main simulation and experimental results as a function of time (four blocks of five
periods each) and market capacity (c = 4 and ¢ = 8): (a) number of entrants; (b) distance
from symmetrical mixed strategy equilibrium—the absolute difference between the observed
number of entrants and the expected number in symmetrical mixed strategy equilibrium; (c)
probability of alternation.

The Observed Learning Processes

To assess the descriptive power of the model, we turn next to compari-
son of the simulated and observed results. The mean number of entrants
for both games with ¢ =4 and ¢ =8 in Conditions 1, 2, and 3, are
presented in columns 2, 3, and 4, respectively, of Fig. 1a. To compare the
observed and simulated learning functions, the results are displayed again
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in terms of four blocks of five rounds each. Convergence to equilibrium is
observed for all three experimental conditions; the only possible exception
is game ¢ = 4 in Condition 2.

The mean number of entrants were subjected to a 2 X2 X3 X4
(market capacity by presentation order by information condition by block)
ANOVA with repeated measures on the first and fourth factors. (We used
the group as the unit of analysis and grouped the number of entrants into
four blocks.) The ANOVA yielded a significant main effect due to market
capacity (F, ¢ = 131, p < 0.0001) and showed that this effect increases
with time (the capacity by block interaction is significant, F; ;4 = 8.15,
p < 0.005). As shown in Fig. 1a, in all three experimental conditions the
mean number of entrants in the larger market (¢ = 8) exceeded the mean
number of entrants in the smaller market (¢ = 4). This result was obtained
in each of the 12 groups of subjects on the final block.

In addition to the market capacity main effect and the capacity by block
interaction effect, only the information condition and the order of presen-
tation main effects were significant. The order effect (F, ; = 7.61, p < 0.05)
reflects transfer from the first to the second market: Over the two markets,
the average number of entrants was 5.94 when the small market was
presented first, and 6.35 when the larger market was presented first. As
can be seen in Fig. 1a, the information effect (F, ¢ = 7.65, p < 0.05) is due
to the difference between the first condition (personal feedback) and the
other two conditions (public feedback). This difference is significant (F, y,
= 5.17, p < 0.05), whereas the difference between Condition 3 and the
first two conditions as well as all pairwise comparisons are not significant.

A comparison of the observed and simulated learning functions in Fig.
la shows that the Roth—Erev model tracks the general trend of the
aggregate results reasonably well. For both observed and simulated results,
the learning function increases with experience for ¢ = 8 and decreases
for ¢ = 4, the former function is steeper than the latter, and the major
change occurs between blocks 1 and 2.

Figure 1b (columns 2, 3, and 4) displays the mean deviation from the
equilibrium point. Only two main effects are significant (using the four-way
repeated measure ANOVA described above): a time (block) effect (Fj 44
= 7.64, p < 0.005) that implies learning toward the equilibrium, and a
market capacity effect (F, ; = 31, p < 0.005). A comparison of the simu-
lated and observed mean results shows similar learning trends. Yet, the
Roth—Erev model fails to predict the market capacity effect in Conditions
2 and 3 (this effect also violates the mixed-strategy equilibrium prediction).

Figure 1c (columns 2, 3, and 4) portrays the probability of alternation in
Conditions 1, 2, and 3, respectively. The observed results are much closer
to the simulation results than to either the pure- or mixed-strategy
equilibrium solutions. However, in all three information conditions, the
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probability of alternation is seen to decrease with experience (F; ;3 = 4.2,
p < 0.05), particularly for the game ¢ = 4. In contrast, the Roth—Erev
model predicts a more or less flat function for ¢ = 4 and an increasing
function for ¢ = 8. As Fig. 1c shows, the Roth—Erev model correctly
predicts a significant market capacity effect (F, ; = 10.6, p < 0.05).

Previous findings in the market entry game showed considerable individ-
ual differences in decision policies, with some subjects exhibiting hardly
any alternations between the 10 iterations of the same value of ¢ (on
nonconsecutive rounds) and others exhibiting many alternations. To gain
better understanding of individual differences, we computed for each
subject separately the mean number of alternations over the 20 iterations
of each of the 2 ¢ values. The frequency distributions of the individual
mean number of alternations for Conditions 1, 2, and 3 are displayed in
panels 3, 4, and 5 of Fig. 2. The top panel of this figure shows the
frequency distribution of number of alternations for players adhering to
the mixed-strategy equilibrium, whereas the second panel from the top
shows the frequency distribution computed over the 12 X 500 stat-rats.
The theoretical and observed frequency distributions are shown separately
for the two games with ¢ = 4 and ¢ = 8.

Inspection of Fig. 2 shows that, in line with previous results, the three
experimental distributions are more widely spread than the ones predicted
by the symmetrical mixed-strategy equilibrium solution. Although the
simulated distributions are closer to the experimental distribution, they are
not wide enough.

Alternative Explanations of the Information Condition Effect

A within-subject analysis was conducted to compare alternative explana-
tions to the observed information effect. In this analysis, the predictions of
the basic reinforcement model were compared to the predictions of models
assuming that subjects are affected by ‘‘higher level” information. Four of
the models which appear most frequently in the literature were chosen and
then compared in this analysis to the Roth—Erev (RE) model: A variant of
the basic Roth—Erev model assuming an external reference point (other
players’ payoffs) (RE®), an imitation learning model (IM), a simple best
reply model (BR), and a fictitious play model (FP).

At the first step of the analysis predictions were obtained for each of the
decisions made by the subject, given each of the five models. The predic-
tions of the RE model were calculated based on the cumulative reinforce-
ments using assumption A2* (with the parameters used in the left-hand
column of Fig. 1). A uniform distribution of initial propensities was
assumed.
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FIG. 2. Predicted and observed frequency distributions of number of alternations.
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The external reference point variant of the Roth—Erev model (RE®)
considered here assumes that information concerning other player’s payoff
determines the player’s reference point. Following a common idiom (in
Hebrew), we refer to the assumption that distinguishes this model from the
original RE model as the “Big Eyes” assumption. The predictions of the
RE® variant were calculated by the algorithm used for the RE model
(assumption A2*) with one exception: The reference point p(¢) for player i
was defined as the mean payoff of the subjects whose payoff was different
from player i’s payoff.

The imitation (IM) model’s predictions were obtained under the as-
sumption that in round ¢+ 1 the subject imitates the decision that
resulted in the highest payoff in round ¢. If the two strategies resulted in
the same payoff, the subject is assumed to repeat his/her own strategy.

Before presenting the two remaining models, it is important to note that
the experiment was designed to ensure that not all learning rules could be
used by the subjects in all three experimental conditions. We shall use this
aspect of the design in the evaluation of the model fitness scores, but
ignore it in the calculation of these scores. That is, all statistics were
computed based on the actual results. For example, we have computed the
correspondence between the imitation model’s predictions and actual
behavior in Condition 1 even though the subject could not imitate other
subjects in this condition.

The remaining two models are expectation-based learning models. Like
the imitation learning model, they are deterministic in nature; they predict
that the subject will enter with probability 1, if he or she expects that this
decision will maximize payoff. The two models differ from each other with
respect to the information that is assumed to give rise to these expecta-
tions. According to the best reply (BR) model, player i behaves in round
t + 1 as if he or she expects that the other players will not change their
behavior from round ¢ to round ¢ + 1. That is, player i is expected to
choose the strategy that maximizes profit, given the other players’ last
choice.

Finally, according to the fictitious play (FP) model, the player’s expecta-
tions are based on the assumption that all the other players decide to enter
with the same fixed probabilities. Thus, the player is predicted to assess
this probability and then choose the appropriate best response. Note that
this rule is the natural extension of the Fictitious Play rule in two-person
games (Robinson, 1951; a similar extension was studied by Cooper et al.,
1997).

At the second stage, fitness scores were calculated for each prediction.
To facilitate comparison between the probabilistic and the deterministic
models, we used the proportion of accuracy point predictions (PA) score.
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TABLE |
Proportion of Accurate Individual Choices Predictions by Five Models”

Proportion of accurate prediction

Condition (payoff rule, feedback) n RE RE® 1M BR FP

1. (Unknown, Personal) 48 0.63 (0.63) (0.56) (0.58) (0.58)
2. (Unknown, Public) 48 0.59 0.61 0.54 (0.55) (0.57)
3. (Known, Public) 48 0.60 0.64 0.54 0.57 0.60

“When the information assumed to be used by the model was not available to the subjects,
the relevant proportion is written in parentheses.

The PA score is equal to 1, if the subject makes the most likely choice
under the model, and 0, otherwise. (When both strategies were equally
likely under the model, the model’s prediction was set to be the subject’s
choice on the previous round.)

At the final stage, the average PA scores were computed for the last 19
decisions (rounds 2—20) made by each subject in each game, and compari-
son statistics were calculated for each of the 48 subjects in each of the 3
information conditions.

The mean fitness scores are presented in Table |I. The scores of the
models that could not be used by the subjects (because they did not have
the necessary information to perform the assumed computation) are
shown in parentheses. Across all subjects, the RE model provides the best
fit in Condition 1. In the other two conditions, the external reference point
variant of the model (RE®) outperforms the other models.

Recall that the main goal of the present analysis is to examine how the
subject’s behavior differs from the behavior predicted by the RE model. To
address this issue, we inquire if each of the four alternative models
captures a significant tendency of the subject to use information that is not
expected to be used under the RE model. Thus, a difference score (Dj)
between the RE fitness score and model j’s fitness score (F;) was com-
puted for each subject. For example, if for a certain subject RE = 0.65 and
FP = 0.6, then D, = 0.05. Under the assumption that model j describes
the way subjects utilize the information concerning other subjects’ behav-
ior, D; should be affected by the information conditions. Larger D; values
are expected when model j cannot be used (the score j is presented in
parentheses).

Analysis of variance reveals that only one of the four difference score,
D, was affected by the model’s usability (F, ,,, = 5.45, p < 0.025). The
remaining three scores were not affected by the availability of the neces-
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FIG. 3. Mean payoff (minus 1, the payoff for staying out) as a function of block in the
format of Fig. 1.

sary information (p > 0.05). Similar results were obtained in an analysis
using groups rather than individual subjects as the units of analysis.

Simulation of the External Reference Point Variant of the Reinforcement
Learning Model

The right-hand column in Fig. 1la-c and the bottom panel in Fig. 2
display simulation results for the external reference point variant of the
reinforcement learning model. In line with the within-subjects analysis, the
simulation provides a better fit to the results obtained in the Conditions 2
and 3 than the RE model. Most important, the “Big Eyes” assumption
seems to explain why public feedback increased the number of entrants.

Note that whereas both the original and the external reference point
models appear to predict a convergence toward an equilibrium, the pre-
dicted efficiencies (average payoffs) are quite distinct. The larger number
of entrants given the external reference point reduces efficiency. Panels 1
and 5 in Fig. 3 (average payoffs over market sizes in Fig. 1's format)
illustrate this point. Panels 2, 3, and 4 in Fig. 3 show that in line with the
“Big Eyes” assumption, in the current settings additional information
impairs earnings.

Did Subjects Use Imitation- or Expectation-Based Rules?

The observation that the availability of information needed to follow an
imitation or expectation learning rule did not significantly increase the
proportion of decisions that can be described by the rule is slightly
disturbing. This null result is inconsistent with informal information that
was collected in post-experimental discussions with the subjects in which
many reported that they did develop expectations and tried to maximize
payoffs.
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Two explanations of this inconsistency could be considered. First, in line
with Nisbett and Wilson (1977), it could be argued that the subjects
“report more than they can tell.” That is, they think that they used
expectation and imitation, whereas in fact, unconsciously simple reinforce-
ment guided their behavior.

A second, possibly more plausible explanation is based on the hypothesis
that different subjects used contradicting rules. Under this view, the weak
descriptive power of the imitation and expectation models might imply that
the frequency of utilization of each of these rules is roughly similar to the
frequency of utilization of the opposite rules. For example, for each
imitation-based decision there was a “best reply to imitation” (see Stahl
and Wilson, 1995, for a similar argument). Computer simulations suggest
that utilization of strategies of these types can increase the average
number of entrants.

Within-group balance can be predicted under the hypothesis that imita-
tion and expectation rules are part of the strategies considered by the
players. Under the cognitive game theoretic approach of Roth and Erev,
players learn to choose among these strategies in an adaptive fashion.
Thus, in the present game if, for some reason, some players follow a pure
strategy repeatedly, other players are predicted to learn to follow the best
response to that strategy.

Under this view, negative correlations are predicted between the utiliza-
tion (fitness score) of specific strategies by different group members. These
negative correlations are expected to be sensitive to the availability of the
information that is necessary in order to use the different strategies.

To evaluate this hypothesis, three additional scores were computed for
each subject. The score O; for player i was defined as the mean of the
fitness scores of player i’s 11 group members for model j. The correlations
between the individual players’ scores and their group averages (r(Fj, Oj))
are presented in Table Il. In support of the present hypothesis, stronger
negative correlations were observed for each of the three rules when the
information needed to follow the rule was available.

For each of the three strategies, an analysis of covariance was conducted
in order to test whether the linear relation between player i's score and
his/her group member average score was significantly affected by the
availability of the relevant information. A marginal significant effect of the
availability of the information was detected for the imitation strategy
(Fy 143 = 2.8, p < 0.05, one-tail test). The effect was insignificant for the
expectation strategies (p > 0.05). Thus, it appears that the hypothesis that
imitation—expectation strategies were utilized cannot be completely re-
jected. Additional data are needed in order to evaluate the information
effect.
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TABLE 11
Correlations between Individual Players’ Fitness Score and Their Group Average Scores

Statistic
Condition (payoff rule, feedback)  n r(Finm,On) r(Fgr,Ogr)  1(Fep, Ogp)

1. (Unknown, Personal) 48 (—0.00) (0.03) (—0.08)
2. (Unknown, Public) 48 —0.22 (—-0.17) (—0.26)
3. (Known, Public) 48 —0.39 —0.26 -0.37

COMPARISON WITH PREVIOUS STUDIES

The present results suggest that the “‘magic” observed in previous
market entry experiments can be accounted for by simple reinforcement
learning processes. The *“invisible hand” that quickly leads individual
agents to equilibrium in these games may be similar to the “hand” that
affects bar pressing decisions of rats and pigeons.

At the same time, the present results suggest that the basic Roth—Erev
model may be too simple. In violation of this model, our subjects were
affected by information concerning other players’ payoff. The effect of the
additional information can be described by an external reference point
variant of the Roth—Erev model, but can also be described by the assump-
tion that subjects use contradiction imitation—expectation based strategies.

It should be emphasized that the “Big Eyes” assumption that underlies
the external reference point model is not suggested here as a general
principle that describes the classification of reinforcement whenever play-
ers know other players’ payoffs. It is easy to see that there are settings in
which this assumption cannot capture behavior. One setting involves
repeated two-person games in which players are strongly interdependent.
Consider, for example, games with a Pareto efficient equilibrium and an
opportunity to earn more than the other player (but less than the equilib-
rium outcome) by deviating from this equilibrium. Whereas the external
reference point model predicts coordination failure, experimental results
(see, e.g., Van Huyck et al., 1990) report efficient coordination.

Another setting in which the external reference point model is inconsis-
tent with experimental results involves asymmetrical games in which the
average payoff of the “weaker” players is below the average payoffs of
other players. The “Big Eyes” assumption implies that, for the weak
players, all strategies will be negatively reinforced; for that reason, no
learning is expected to take place. There are many known violations of this
prediction. For example, consider the learning of the weak players in the
ultimatum game (Roth et al., 1991) and the Best Shot game (Prasnikar and
Roth, 1992).
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Thus, the extent to which players behave as if their reference point is
affected by external outcomes appears to be context-dependent. The
counterexamples presented above illustrate that at least two factors (inter-
dependency and asymmetry) are likely to eliminate the effect of external
payoffs.*

Another factor that is likely to affect the significance of external payoffs
is the salience of this information. In Conditions 2 and 3 of the current
experiment, other player’s payoffs were presented to the players in the
same way that their own payoffs were presented (the experimenter had
stated all values). It is reasonable to hypothesize a smaller effect of
external payoffs when they are not explicitly presented. To test this
hypothesis and assess the robustness of the current approach, the follow-
ing section examines previous market entry experiments.

Comparison with Previous Market Entry Results

The previous market entry experiments (Rapoport et al., in press;
Sundali et al., 1995) focused on complete information conditions similar to
Condition 3 of the present paper. Following each trial, subjects were
informed of their personal payoff and the number of entrants. In principle,
the subjects could calculate the payoff of their team members (although
this information was not provided directly). Whereas these experiments
were not designed to assess the effect of this information, the data can be
used to evaluate the external reference point model. To achieve this goal,
we compare the model proposed by Rapoport et al. with the external
reference point variant of the Roth—Erev model.

To adapt the Roth—Erev model to their experimental task (market entry
games in which the market size randomly changes from trial to trial),
Rapoport et al. assumed that on each trial the player first selects a cutoff
point and then chooses to enter if and only if the market size exceeds that
point.

Recall that Rapoport er al. examined behavior in 20-player computer-
ized market entry games that were played for 100 trials. The value of ¢
was varied randomly from period to period (¢ = 1,3,...,19). As in the
present study, the payoff for entering the market was 1 + 2(¢c — m). The
payoff for staying out (v) varied from group to group. It assumed the
values —10 in the first group, —6 in a second, and +6 in the third.

The left-hand columns in Fig. 4a—c present the main experimental
results of Rapoport et al. in 5 blocks of 20 trials (2 repetitions of each ¢

“Some support for the hypothesis that the “Big Eyes” assumption is likely to provide a
good approximation of behavior given symmetry and low interdependency comes from the
observation that information concerning the payoff of symmetrical players in large popula-
tions has a major effect on behavior (e.g., Bolton, 1991; Harrison and McCabe, 1996).
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FIG. 4. Main experimental and simulation results of Rapoport er al. (in press) as a
function of time (5 blocks of 20 periods each) and payoff condition: (a) distance from
symmetrical mixed strategy equilibrium—the absolute difference between the observed
number of entrants and the expected number in symmetrical mixed strategy equilibrium; (b)
probability of alternation; (c) mean payoff (minus ¥, the payoff for staying out).
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value in each block). The main experimental trends are consistent with the
current findings: a very quick convergence to the mixed-strategy equilib-
rium number of entrants, a decrease in the number of alternations over
time, and relatively flat payoff curves.

The central panels in Fig. 4-c display the predictions of the reinforce-
ment learning model proposed by Rapoport et al. (in press), referred to as
the RSES model. This model assumes that subjects set their initial refer-
ence point at p(1) = v and then update it based on their personal payoff
(in line with the basic Roth—Erev model). The right-hand panel of Fig. 4
displays the prediction of the external reference point variant of the
model. The two variants of the model provide similar predictions of the
distance from equilibrium and the probability of alternation (Fig. 4a and
4b). Both models capture the major trends with regard to these statistics.
A larger difference between the models is observed in Fig. 4c. The external
reference point model predicts lower expected payoffs. The experimental
results seem to fall between the two predicted curves.

Similar findings are displayed in Fig. 5a—c, which present the main
results in Experiment 2 of Sundali et al. (1995). This experiment had a
design similar to Rapoport ef al.’s study with the exception that v = 1 in
all three groups. Sundali et al.’s results are consistent with Rapoport et
al.’s results. The distance from equilibrium and the number of alternation
functions are captured by the two variants of the reinforcement learning
model, whereas the payoff functions fall between the predictions of the
two variants.

A quantitative assessment of goodness of fit can be obtained by compar-
ing the distance between the different functions. Mean squared deviation
scores (MSD) were calculated for each model. The models’ MSD scores
were computed as the average squared distance between the model’s curve
and the three group curves in each experiment. Thus, each score is an
average of 15 squared differences (3 groups X 5 points in time) in each
experiment. Low MSD scores reflect better fit.

Table Il presents the MSD scores. It shows that over the two experi-
ments the “Big Eyes” assumption improves the fit of the entrants (distance
from equilibrium) and the profit curves, but impairs the fit of the alterna-
tion curve.

To evaluate the significance of the MSD scores, it is useful to compare
the models’ scores with a between-group scores. The bottom row in Table
11 presents the MSD scores between the curves of the three groups in
Sundali et al’s experiment. Note that all the three ‘‘between-groups”
scores are larger than the models’ scores for the relevant experiment.
These results imply that, on the average, each experimental group was
closer to each of the two models than to the other two groups.
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payoff (minus 1, the payoff for staying out).
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TABLE 111
Mean Squared Difference (MSD) Scores for the Functions in Figs. 4 and 5
(Rapoport et al., in Press; Sundali et al., 1995).

MSD for
Distance from Probability of Average
Model /curves: Experiment: equilibrium alternation payoff
Rapoport et al. Rapoport et al. 0.239 0.0014 0.175
variant (RSES)
Sundali et al. 0.123 0.0013 0.129
Average 0.181 0.0014 0.152
The Ext. R. P. Rapoport et al. 0.215 0.0036 0.105
variant
Sundali et al. 0.109 0.0018 0.141
Average 0.162 0.0027 0.123
Between groups Sundali et al. 0.203 0.0020 0.210

In summary, the present analyses suggest that both variants of the
Roth—Erev model provide reasonable approximation to the aggregate
results of Rapoport et al. and Sundali ef al. The observed mean results fall
somewhere between the predictions of the two variants of the model. The
comparison of these results with Conditions 2 and 3 of the current
experiment supports the hypothesis that the salience of external payoffs
affects their effect. Rapoport et al.’s and Sundali et al.’s results are best
described by a model that assumes that the players’ reference point is
sensitive to both internal and external payoffs. Clearly, additional research
is needed in order to improve our understanding of the conditions that
affect the determination of the reference point.

Comparison with Similar n-Person Games

The fast learning observed in the current setting is consistent with the
results of repeated coordination games (Ochs, 1990; Meyer et al., 1992)°,
but differs from the slow learning typically observed in n-person experi-
mental games with Pareto deficient equilibria. One example is the team
game studied by Bornstein et al. (1994) following Palfrey and Rosenthal

*Meyer et al. observed quick convergence to a near mixed strategy equilibrium (on
aggregate relative frequency, but not at the individual level) and a suggestion for a pure
equilibrium play by experienced subjects. Ochs’ subjects (in the zero turnover condition) were
closer to a pure strategy equilibrium. The relative advantage of the pure strategy equilibrium
in Ochs’ study is consistent with the Roth—Erev model: in Ochs’ multiple small markets game
exploration is costly and only rarely reinforced.
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(1983). Whereas this game has a unique pure-strategy equilibrium (in
which 100% investment rate is predicted), Bornstein et al. found 50%
investment rate and practically no learning trend in 20 rounds. Bornstein
et al. found that their results are consistent with the Roth—Erev model. In
their game, this simple reinforcement learning rule predicts that behavior
will be “locked” between two mixed-strategy equilibria (see Palfrey and
Rosenthal, 1983), and as a result the payoff function is flat and no learning
is observed.

Slow learning process is also predicted by the Roth—Erev model in
step-level public goods problems that have contradicting multiple equilib-
ria. Figure 6 demonstrates that this prediction is consistent with experi-
mental results. The left-hand panel shows the proportion of contribution
in five blocks of five trials each in the three conditions studied by Rapoport
and Eshed-Levy (1989). The “Fear & Greed” condition is a five-person
step-level public goods game in which the contribution cost is 2 units, and
the public good is a reward of 5 units that each player gets if at least three
players contribute. The “No Fear” condition is a variant of the first
condition in which contributors do not lose their contribution if the public
good is not provided. Finally, in the “No Greed” condition all players are
charged for the contribution if the public good is obtained. After each
choice, the subjects received feedback about their personal payoff. Infor-
mation about other players’ decisions and payoff was not provided. Thus,
the external reference point assumption does not apply. As can be seen in
the right-hand side of Fig. 6, the Roth—Erev model (with the parameters
used above) captures the slow experimental learning trends.

These results support the assertion that the difference between the
current setting and situations in which subjects appear to be a slow
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FIG. 6. Proportion of contribution to the public good in the experiment and simulation of
Rapoport and Eshed-Levy (1989) as a function of time (five blocks of five periods each).
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learners may not be a result of substantially different learning processes.
Rather, it is possible that the same learning process (that can be approxi-
mated by the Roth—Erev model) leads to fast convergence to equilibrium
in some games and to slow convergence in others.

CONCLUSION

In line with recent research (e.g., Roth and Erev, 1995; Erev and Roth,
in press; Bornstein et al., 1994; Rapoport et al., 1997; Rapoport et al., in
press; Ochs, 1995a; Erev et al., 1995; Slonim and Roth, in press; Gilat
et al., 1997; Camerer and Ho, in press; Tang, 1996; Mookherjee and
Sopher, 1997; Nagel and Tang, in press), the present paper demonstrates
that simple reinforcement learning models provide a good approximation
of aggregate behavior in a wide setting of experimental games.

The present paper improves our understanding of the value of reinforce-
ment learning processes in four important ways. First, it illustrates that
reinforcement learning (and observed learning) can lead toward an asym-
metrical mixed-strategy equilibrium. Second, it shows that the Roth—Erev
guantification provides better approximation of behavior when the players
do not know other players’ payoffs. Third, it demonstrates that, in market
entry games, the effect of information concerning other players’ payoff can
be modeled by the assumption that this information affects the players’
reference point. Finally, the present paper reveals that even minor quanti-
tative differences in the assumed learning process can have a nontrivial
effect on the market efficiency. Thus, the fact that good approximation of
behavior can be achieved by simple reinforcement learning models does
not imply that the details of the learning process can be ignored.
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