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Abstract

Peer review of research proposals and articles is an essential element in R&D processes worldwide. In most
cases, each reviewer evaluates a small subset of the candidate proposals. The review board is then faced with the
challenge of creating an overall “consensus” ranking on the basis of many partial rankings. In this paper we propose
a branch-and-boundmodel to support the construction of an aggregate ranking from the partial rankings provided by
the reviewers. In a recent paper we proposed ways to allocate proposals to reviewers so as to achieve the maximum
possible overlap among the subsets of proposals allocated to different reviewers. Here, we develop a special branch-
and-bound algorithm that utilizes the overlap generated through our earlier methods to enable discrimination in
ranking the competing proposals. The effectiveness and efficiency of the algorithm is demonstrated with small
numerical examples and tested through an extensive simulation experiment.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Peer review of research proposals and articles is an essential element in R&D processes and the
academic community worldwide. Surprisingly, the operational issues involved in running a peer review
process have drawn almost no attention from the operations research/management science community.
The few articles that touch this area do not attempt to make the process work more effectively. Rather,
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they typically highlight the potential deficiencies of the process, suggest alternative quantitative models
to replace it and compare their results to the outcomes of the peer review (e.g.[1,2]).
In a recent paper[3] we argue that ordinal ranking of proposals is a valid (and oftenmore practical than

cardinal ranking) technique to evaluate proposals and developed methods to assign proposals to specific
referees. In addition to the obvious need to match the reviewers’ qualifications to the proposals, our
methods lead to the maximal possible overlap in the subsets of proposals assigned to different referees.
This overlap is essential when the reviewers are asked to provide their evaluations through pairwise
ordinal rankings since otherwise, any overall ranking would be arbitrary.
In this paper, we address the problem of combining the judgements of the reviewers in a fair, objec-

tive and efficient manner. Over the past several decades various authors have examined the problem of
combining individual preferences to form a compromise or consensus ranking. The manner in which
preferences over the objects to be ranked (proposals, in our particular case) are expressed, depends on
the level of possible quantification. In some situations cardinal or quantitative data on each of various
attributes of the objects can be specified. In many practical applications, however, it is not possible to
explicitly quantify the utility or value in a full cardinal format, and one must settle for the less specific
ordinal specification. In some situations one can specify a complete “ranking” of then objects on an or-
dinal scale in vector formatA = (a1, a2, . . . , an), whereai ∈ {1,2, . . . , n} is the rank position occupied
by objecti.When such a rankingAk is supplied by each memberk of a committee ofK members, one
can then define a consensus of opinions in terms of the median ranking as discussed in Cook and Seiford
[4]. From a practical point of view, ifn is large, a full ranking may prove difficult, and the most that one
can expect is to obtain partial rankings of subsets of the objects.
A common format for expressing preferences is to use ‘pairwise’comparisons. Thismode of expression

forces one to make a direct choice of one object over another when comparing two objects rather than
requiring one to compareall objects simultaneously. As discussed in Cook and Kress[5], consumer pref-
erences over a set of products are commonly elicited from respondents by way of pairwise comparisons.
The consumer is generally asked questions of the form ‘in terms of flavor, do you prefer producta, or
productb?’. In many sporting events, such as round robin tournaments, outcomes from the matches are,
by definition, reported as pairwise comparisons (e.g.,a defeatedb). Thus, pairwise comparisons provide
a practical framework, in a wide variety of settings, for collecting information on ordinal preferences. It
is particularly attractive when a comparison of all the objects is not possible and only a partial ranking
may be supplied. In the case that an individual voter or committee member can only express preferences
concerning a proper subset of the objects, then a partial ranking is the most information that this person
can provide. In such a situation, vector representations as discussed above, make little practical sense,
and one must then default to pairwise comparisons. A pairwise method is clearly advantageous in the
current application where an individual reviewer will be asked to appraise only a subset of the proposals.
The problem of deriving a consensus among a set of ordinal preferences is one that arises in a wide

variety of settings. As discussed above, much of market research is aimed at arriving at a consensus or
compromiseofopinionsamongasetof consumerpreferences.Bothsophisticatedandadhocmethodshave
been developed over time for deriving such a consensus. In a number of fields such as computer science,
articles submitted to major conferences are refereed prior to acceptance for inclusion in the program. The
submissions are sent tomany reviewers,who return their evaluations to the programcommitteewhich then
meets for a number of days of deliberations to finalize the list of accepted papers. Reviewers generally do
not treat these submissions in the same way as they would treat a journal submission (that is, they are not
willing to invest the timeandeffort to doa full-fledged review).Hence, it is reasonable to ask each reviewer
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to rank order a limited number of submissions, and then aggregate the outcomes. Since the rankings serve
only as raw-material to the committee (who may overrule the order recommended by some reviewers),
ordinal ranking, and specifically, the use of pairwise comparisons is a highly desirable approach. Finally,
another interesting application suggested by Beg and Ahmed[6] involves rank aggregation of partial
rankings obtained through search engines on theWorldWideWeb. The above examples serve to illustrate
the wide applicability of ordinal ranking and pairwise comparisons in practical settings.
The problem of deriving aconsensus rankingfrom preferences provided in pairwise format was first

examined by Kemeny and Snell[7] and later by Bogart[8] who extended the structure to partial orders.
In neither case were possible solution methods presented. The problem of consensus ranking in the case
that preferences are represented in vector (rank order) format has been investigated extensively by many
researchers including Cook and Seiford[4], Kirkwood and Sarin[9] and Cook and Kress[5], and various
solutionmethods based on distance functions have been studied. The consensus ranking problem has also
been approached from the point of view of various outranking methods such as that due to Roubens[10].
Further, a somewhat related problem is the tournament ranking problem as studied inAli et al.[11], Cook
and Kress[12], and Golany and Kress[13].
Regardless of the representation used to elicit preferences, whether in vector or pairwise comparison

format, one of the most commonly used criteria for developing a compromise or consensus ranking is
to minimize the number of “violations” (generally called theminimum violationsconsensus ranking).
The idea is to obtain an overall ranking that displays the least number of cases where the opinions of
the voters or respondents areviolated. E.g., if the voter prefersa to b, yet the consensus ranking calls
for b preferred toa, then a violation has occurred. While there are other criteria for deriving a consensus
such as the Spearman foot rule distance technique, it is the minimum violations method that is the most
widely used in practice. For example, the overall ranking of players in a round-robin tournament (seeAli
et al.[11] and Cook and Kress[12]) is intended to be the one which deviates from the actual competition
outcomes to the least extent possible. Most of the practical tools for aggregating consumer preferences
are based on this idea. In the case, for example, where preferences are specified in ranking-vector format,
it is common to compute the sum or average of ranks (across the set of consumer responses). The object
with the lowest sum or average is ranked in first place, and so on. This is the well known Kendall[14]
scores method, or the ‘method of marks’ due to Borda[15]. Cook and Seiford[16] show that the average
(hence sum) of ranks is equivalent to the minimum violations ranking in the
2 norm. Thus, even the ‘ad
hoc’ techniques, such as a sum of ranks, is based on the idea of minimum violations.
In this paper we develop a branch-and-bound algorithm for deriving a consensus ranking of the pro-

posals with minimum violations. We note that the minimum violation problem is NP-hard due to its
equivalence to the minimum feedback arc set problem (see, e.g.,[17]). Thus, using a branch-and-bound
procedure is a reasonable approach. While it may be necessary to determine only a winning proposal,
rather than a complete ranking of all the alternatives, the distance-based method that we use requires
(in general) that a complete consensus ranking be constructed before a ‘top ranked’ proposal is actually
found.As will be illustrated, a ‘winning’proposal may emerge before the algorithm reaches the complete
ranking of all the alternatives.
The rest of the paper is organized as follows. In Section 2 we present an algorithm to aggregate the

partialmatrices containing thepairwise evaluations of the reviewers into a consensus rankingand illustrate
the implementation of the algorithm through a numerical example. In Section 3, we report on a large
set of numerical examples used to evaluate the procedure proposed in the previous section. Section 4
concludes the paper.
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2. Ranking procedures

We start by formalizing some of the concepts that were already discussed in Section 1. Acomplete
rankingof a set ofN proposalsP = {p1, p2, . . . , pN } is a permutationR = (pj1, pj2, . . . , pjN ) of P. A
sub-rankingof R is an ordered set of some consecutive proposals inRwith the same order as inR. A
suffix(prefix) of a rankingR is a sub-ranking ofR that contains the last (first) proposal ofRor an empty
ranking. Apartial rankingof the setP is an ordered subset ofP.
Our objective is to develop amethod to derive a complete ranking based on partial rankings provided by

K reviewers. As described earlier, each reviewer will be assigned a subset of theN proposals to evaluate,
and is expected to provide a partial ranking corresponding to this subset. For purposes herein, we assume
that the preferences for reviewerkare given by a binary pairwise comparison structure through theranking

matrixAk =
(
ak
pq

)
, where

ak
pq =

{1 if proposalp is preferred toq,
−1 if proposalq is preferred top,
0 if p andq are not compared.

Since it is senseless to compare any proposalp to itself, we setak
pp =0 for allpandk.We assume here that

each reviewer expresses a clear preference of one proposal over another when comparing two proposals.
That is, we are assuming herein that tying two proposals that are being evaluated is not a valid option for
the reviewer.
Kemeny and Snell[7] prove that in the presence of a natural set of axioms, the unique distance function

on the space of rankings is the absolute value functional. Specifically, the distanced between any two
ranking matricesA = (apq) andB = (bpq) can be given by

d(A,B) = 1

2

N∑
p=1

N∑
q=1

|apq − bpq |.

Definition 2.1. Given a collection of partial rankings{A1, A2, . . . , AK} theconsensus valueof a ranking
B (in matrix representation) is given by

M(B) =
K∑

k=1
d(Ak, B) = 1

2

K∑
k=1

N∑
p=1

N∑
q=1

|ak
pq − bpq |. (1)

In the sequel, we simplify notation by using the expressionM(R) where the argumentR is a ranking
(in vector representation) and not the matrix it induces.

Definition 2.2. A rankingR∗ is anoptimal consensus rankingif it minimizes the consensus valueM(R)

over all possible rankingsR.

The pairwise comparison consensus ranking problem has, to the best of the authors’ knowledge, never
been viewed previously from a strictly mathematical programming perspective. The principal difficulty
in deriving a mathematical programming structure has to do with the requirement that the elementsbpq
in the corresponding ranking matrixB satisfy requisite transitivity conditions.



ARTICLE IN PRESS
W.D. Cook et al. / Computers & Operations Research( ) – 5

One can express the problem as an integer programming formulation as follows. Define a set of binary
variablesxpq for all p �= q wherexpq = 1 if proposalp is preferred to proposalq and is 0 otherwise.
Also, for each pair of proposals{p, q}, let the summary statisticsrpq be the number of reviewers who
preferredq to p. Hence,rpq represents the number of violations that will occur ifp is ranked ahead ofq
in the final ranking. Now, solve the binary integer programming problem.

max
∑

{p,q}∈P 2:p �=q

rpqxpq

s.t. xpq + xqs �1+ xps ∀{p, q, s} ∈ P 3 : p �= q, p �= s, q �= s,

xpq + xqp = 1 ∀{p, q} ∈ P 2,

xpq ∈ {0,1}.

(2)

It is important to point out that while one can theoretically derive a consensus ranking by solving
the above problem, size becomes a major issue. Specifically, the number of constraints is given by
N(N −1)(N −2)+0.5N(N −1), which for the case of, say, 60 proposals yields approximately 207, 090
constraints. For this reason, we propose to solve this problemusing a branch-and-bound algorithm.Again,
we point out that a number of procedures for the various ranking representations are discussed in Cook
and Kress[5]. However, no formal methodologies with accompanying computational tests have been
presented for the Kemeny and Snell[7] consensus method.
In order to initiate a branch-and-bound algorithm we defineuk as the number of proposals which

reviewerkevaluates.We note that the values ofrpq anduk are all the information needed to calculate the
consensuses valueM(R) for any rankingR.

M(R) =
∑

{p,q}∈P :p�Rq

rpq + 1

2

K∑
k=1

(
N − uk

2

)
, (3)

wherep�Rq denotes the fact thatp precedesq in the rankingR. The first summation in (3) counts
the number of cases where a reviewer prefersp over q but q is ranked in a higher position in the
rankingR. Each such case contributes 1 toM(R). The second summation counts the cases where a
reviewer expresses no preference betweenp andq (since he did not review both of these proposals).
Each such case contributes12 to the consensus value. We note that the second summation is uniquely
defined by the values ofN andu1, . . . , uk which remain constant for all rankings. Therefore, a ranking
that minimizes

M(R) =
∑

{p,q}∈P :p�Rq

rpq (4)

also minimizesM(R). Hence, from here on we shall consider the minimization ofM(R) instead of
M(R).

Proposition 2.1(Separability property). Consider an optimal consensus rankingR∗ of a set of proposals
P. LetR1, . . . , Rm be a partition ofR∗ into m consecutive sub-rankings which divide P intoP1, . . . , Pm.
ThenR1, . . . , Rm are optimal consensus rankings ofP1, . . . , Pm with respect to the same reviewers’
preferences.
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Proof. Consider the value of the rankingR∗,

M(R∗) =
∑

{p,q}∈P :p�Rq

rpq =
m−1∑
i=1

m∑
j=i+1

∑
p∈Pi,q∈Pj

rpq +
m∑
i=1

∑
{p,q}∈Pi :p�Rq

rpq . (5)

Now, assume by contradiction that for somei there exists anR′
i (a ranking of the proposals ofPi) such

thatM(R′
i) <M(Ri). ReplacingRi by R′

i affects only theith term in the second summation in (5) and
so the optimality ofR∗ is contradicted. �

Definition 2.3 (Eligible Prefix (EP)). A prefix R = (q1, . . . , qs) is said to be eligible if the following
conditions hold:

1.
∑

q∈P \R rqs,q �
∑

q∈P \R rq,qs .

2.
∑s−1

i=a rqs,qi �
∑s−1

i=a rqi ,qs for all a = 1, . . . , s − 1.
3.

∑s−1
i=a rqi ,qa �

∑s−1
i=a rqa,qi for all a = 1, . . . , s − 1.

4.
∑s−1

i=a rqs,qi >
∑s−1

i=a rqi ,qs for all a = 1, . . . , s − 1 such thatqa > qs .

Proposition 2.2. Any prefix of an optimal ranking admits conditions1–3of Definition2.3.

Proof. Consider a rankingR= (q1, . . . , qs, . . . , qn). If condition 1 is violated for the prefix(q1, . . . , qs)
then the ranking(q1, . . . , qs−1, qs+1, . . . , qn, qs) is better thanR. To see this, note that by movingqs to
the end, the consensusmeasure is increased by

∑
q∈P \R rq,qs because of the reviewers who preferqs over

the proposals{qs+1, . . . , qn} but it decreases by∑q∈P \R rqs,q because of the reviewers who prefer these
proposals overqs .
For similar considerations, if condition 2 is violated then the ranking(q1, . . . , qa−1, qs, qa, . . . , qs−1,

qs+1, . . . , qn) is better thanR. If the third condition is violated then the ranking(q1, . . . , qa−1, qa+1, . . . ,
qs−1, qa, qs, . . . , qn) is better. �

Proposition 2.3. An optimal ranking that admits condition4 for all its prefixes exists.

Proof. Consider an optimal rankingR1 = (q1, . . . , qn) in which the prefix(q1, . . . , qs) is the shortest
sub-ranking that demonstrates violation of condition 4 for somea′ <s and letabe theminimal such index
with respect tos. Note that sinceR is an optimal ranking then condition 2 holds and so the inequality
of condition 4 is violated with equality. That is,

∑s−1
i=a rqs,qi = ∑s−1

i=a rqi ,qs . Now, by movingqs to the
location beforeqa we create a new optimal rankingR2=(q1, . . . , qa−1, qs, qa, . . . , qn). If the rankingR2
still violates condition 4 we can apply the same procedure again and so on. Since the number of possible
ranking (and in particular optimal ranking) is finite there are only two possibilities to consider. Either this
procedure is ended inRk that admits condition 4 or this is a cyclic procedure and so for somekwe have
Rk = R1. Assume by contradiction that the procedure may be cyclic. Letb be the “highest“ location in
the ranking that is changed during the cycleR1, . . . , Rk. That is any proposal that is ranked aboveqb in
R1 preserves it location throughout the cycle. Let us review the sequence of proposals that are ranked as
highest throughout the cycle. Note that any such proposal must admit lower index than it predecessor in
thebth location. Otherwise, it cannot violate condition 4. Hence the procedure cannot be cyclic and we
are done. �
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In the algorithm below we start with an empty partial rankingR. For each proposalpwhich has not yet
been ranked and is an eligible immediate successor ofR, we construct a lower bound. If this lower bound
is lower than the value of the best known solution, we append proposalp to the partial ranking and store
this ranking as a new node in our branch-and-bound tree. Next, we run a probing heuristic, described
below, to extend the obtained prefix into a complete ranking in order to construct an upper bound. If this
upper bound is lower than the value of the currently known best solution, we take it as a new incumbent
best known solution.
A lower boundon all the rankings with prefixR is given by

M(R) =
∑

{p,q}⊆P1:p�Rq

rpq +
∑

p∈P1,q∈P2
rpq +

∑
{p,q}⊆P2

min{rpq, rqp}, (6)

whereP1 is the set of proposals ranked byRandP2 is the complementary set of the other proposals. We
also note that ifR′ is a ranking created by appending a single proposalp to a rankingR (at the bottom)
then

M(R′) = M(R) +
∑
q∈P2

{rpq −min{rpq, rqp}}. (7)

Thus, updating the lower bound after extending a given partial ranking is easier than calculating it from
scratch.

An upper boundcan be calculated by extending the partial ranking at each node using some fast
heuristic method. Below we describe how a majority rule is iteratively applied to carry out this task.
A probing heuristic

Input: a set of proposalsP, with reviewers preferences summary statistics{rpq}.
Output: A complete ranking withRas prefix and the resultant consensus measure.
Initialization: LetP be the set of proposals not inR.

Iteration:WhileP �=∅, findaproposalp∈P withminimumratio∑q∈P1 rpq/
(∑

q∈P rpq+∑
q∈P rqp

)
.

Add p toRas the last proposal, remove it fromP and repeat.
Output: Return the rankingR.

We note that this procedure can be replaced by any sound heuristic including neighborhood search
heuristics. However since the procedure is to be employed in any node inserted to our branching tree it
should be a quick one.
We are now ready to present the main algorithm to generate an optimal consensus ranking.
Main algorithm—optimal consensus ranking

Input: Set of proposalsP and summary statistics of reviewer decisions{rpq} for all {p, q} ⊆ P .
Step0 (Initialization): Find dominating and dominated partial rankings with respect to the set of all

proposals. Set these proposals as top and bottom proposals,T andB, respectively, and remove them from
P. LetR0 be the initial empty ranking. Use (6) to calculate its lower boundM(R0) and store it as the root
node of the branch-and-bound tree. Define this node as an active one. Use the probing heuristic to obtain
an initial best known ranking and store its consensus measure as upper boundY. If the lower bound of
the root node equals this upper bound go to Step 3.
Step1 (Selecting the node to branch from): Choose from the set of active nodes of the branch-and-bound

tree the one with the lowest lower bound. In case of ties, select the node of the longest partial ranking.
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Denote the ranking of the selected node asRc. Deactivate the selected node. If its lower boundM(Rc) is
lower than the current best known solution go to Step 3.
Step2: For all eligible immediate successors ofRc, p ∈ S(Rc):
Step2a (Branching): Construct a candidate partial rankingRn with Rc followed byp.
Step2b (Bounding): Use (7) to calculate a lower boundM(Rn). If this lower bound is not lower than

the currently best known solution go to Step 3.
Step2c (Create new node): AddRn as an active node to the tree and storeM(Rn) with this node.
Step2d (Probing): Use the probing heuristic to extend this partial ranking into a complete oneRe

n.
Use (7) [or (4)] to calculate the consensus measureM(Re

n). If this measure is lower than the value of the
currently best known solution, store it as the new incumbent best known solution and deactivate all nodes
whose lower bounds are greater than the new upper bound.
Step3 (Termination): If there are still active nodes, return to Step 1. Otherwise, stop and return the

incumbent ranking preceded byT and followed byB.

It is important to note that one may encounter alternate optima when applying the algorithm provided
herein. In such instances, it may make sense to incorporate a secondary objective function that would
select from the alternative optimal solutions, one which is “the most balanced” in terms of distributing
the violations as uniformly as possible across the reviewers. In this way, the result would be seen by
reviewers as being a fair representation of their opinions. Such a mechanism might be a meaningful way
of resolving ties in optimal solutions to the problem. However, implementing such a mechanism requires
a major algorithmic undertaking. Hence, in the current paper we have not attempted to address this issue.
This may be the subject of future research.

2.1. A numerical example

Consider an example withN = 6 proposals, andK = 5 reviewers:

Reviewer Proposals Ranking
1 {1,2,3,5} 1� 3� 2 � 5
2 {1,2,4,6} 2 � 1� 4� 6
3 {3,4,5,6} 4� 3� 5� 6
4 {1,4,5,6} 6� 1� 4� 5
5 {1,2,5,6} 6� 2 � 3� 1

The table below summarizes the data for the proposal pairs:

rpq =




0 2 1 0 0 2
1 0 1 0 0 1
1 1 0 1 0 1
2 1 0 0 0 1
2 1 2 2 0 1
1 1 1 2 1 0


 .

Algorithm results
Initialization: We start by identifying dominating and dominated partial rankings. Note that for all

p ∈ P ={1, . . . ,6}we haver2p�rp2 and so we can setT = (2) and remove{2} fromP. Next, we identify
proposal 5 as a dominated one and so we setB = (5) andP = {1,3,4,6}. With the newP, proposal 3
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is also dominated and so we add it toB (B = (3,5)) and remove it fromP (P = {1,4,6}). At this point,
no dominating or dominated proposals are left. For example, proposal 1 is not a dominating proposal
with respect toP sincer16>r61 and it is not a dominated one sincer14<r41. The remaining reviewers’
evaluation matrix is now given by

rpq =
(1) (4) (6)

(1) 0 0 2
(4) 2 0 1
(6) 1 2 0

Next, we calculate a lower bound for all the rankings (of the remaining proposals) using (6) and obtain
M(empty ranking)=2. To obtain an upper bound, we use the probing heuristic.We first calculatemajority
indicesM1 = 2/(2+ 3) = 0.4,M4 = 2/(2+ 3) = 0.4,M6 = 3/(3+ 3) = 0.5. We obtain the ranking
1 � 4 � 6 and store it as incumbent solution. Using (4) we calculate the consensus measure of this
rankingM(1� 4� 6) = 2+ 1= 3. This is the upper bound for now.
Branching: We process the root node with the empty ranking. Since all the proposals inP = {1,4,6}

are eligible successors of this ranking, we check them all.

• Adding proposal1: We are left withP = {4,6} where proposal 4 dominates proposal 6 and so we
obtain the ranking 1� 4 � 6 withM(1 � 4 � 6) = 2+ 1= 3. This is a complete ranking which is
not better than our current optimal solution so there is no need to add it to the branch-and-bound tree.

• Adding proposal4: We are left withP = {1,6} where proposal 6 dominates proposal 1 and so we
obtain the ranking 4� 6� 1 withM(4� 6� 1) = 4. This is a complete ranking which is not better
than our current optimal solution so there is no need to add it to the branch-and-bound tree.

• Adding proposal6: We are left withP = {1,4} where proposal 4 dominates proposal 1 and so we
obtain the ranking 6� 4 � 1 withM(6� 4 � 1) = 5. This is a complete ranking which is again not
better than our current optimal solution.

We are now left with no active nodes in our branch-and-bound tree and so we declare the current best
known solution as the optimal ranking ofP ={1,4,6}. Finally, we “merge” the dominating and dominated
rankings, obtained at the initialization step, to this ranking to obtain the optimal solution 2� 1 � 4 �
6� 3� 5.

3. Numerical experiments

Here we demonstrate the applicability of the ranking algorithm presented in the previous section. Our
testing platform was a Pentium 4, 2Ghz with 512Mb RAM that run under Windows XP. We coded the
algorithm in C++ with the aid of LEDA (see[18]) and compiled it with Microsoft Visual C++ 6.0. We
constructed five classes, each with 25 test problems, with different numbers of proposals and pairwise
reviewers as shown inTable 1.
For each of the 125 problems described inTable 1we created 3 different sets of reviewer deci-

sion matrices using the following procedure. A so-called “objective grade” was drawn from a nor-
mal distributionN(75,10) for each proposal. For all the proposals that are actually checked by each
reviewer (according to the heuristic solution obtained at the previous subsection) we generated a re-
viewer grade which is the sum of the objective grade and a normally distributed noiseN(0, �2) with
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Table 1
Five classes of test problems

Class No. of proposals No. of pairwise comparisons

A 20 253
B 20 316
C 30 380
D 40 360
E 60 3150

Table 2
Running time of the ranking algorithm and percentage of the problems solved within 1800 s (3600 s for class E)

Class � = 1 � = 4 � = 9

Avg. (max) % solved to Avg. (max) % solved to Avg. (max) % solved to
running time optimality running time optimality running time optimality

A <0.01 (<0.01) 100 <0.01 (0.02) 100 0.02 (0.06) 100
B <0.01 (<0.01) 100 <0.01 (0.02) 100 0.02 (0.9) 100
C <0.01 (0.02) 100 0.27 (1.52) 100 6.48 (29.33) 100
D 0.01 (0.11) 100 4.68 (36) 100 332 (1800) 96
E 0.08 (0.20) 100 1714 (3600) 72 — —

� = 1,4 or 9. The ranking of each reviewer (given as input to our algorithm) was constructed based
on these grades. The C++ code and our test problems with detailed solutions can be downloaded from
http://iew3.technion.ac.il/Home/Users/golany/Download. In Table 2we present the average and worst
case running time (in seconds) for each of the five classes and three levels of noise. In addition we present
the percentage of the problems that could be solved within the time limit of 1800 s. Recall that for each
class we have 25 instances, so we solved 25× 4× 3= 300 problems.
The table demonstrates the fact that we are able to obtain an optimal ranking formost problem instances

with up to 40 proposals.
It is apparent from the table that the level of noise adversely affects the processing time. However,

any process of ranking is based on the belief that the reviewers are capable of delivering nearly objective
rankings. Moreover, we note that a consistent bias of a reviewer (e.g., a tendency to assess all proposals
as better than what they “really” are) does not affect our procedure. This is because our algorithm uses
only relative ranking as input. This is a fundamental advantage of our procedure as compared to some
traditional procedures where the reviewers are asked to quote an absolute grade for each proposal and
the ranking is based on the average grade of the proposals.
The fact that classesA and B take a similar amount of time to process (both with 20 proposals and with

50and60 reviewers, respectively) implies that our algorithm is insensitive to thenumber of reviewers.This
is not surprising since the heuristic works on a summary statistics of the reviewers responses’ rather than
on the actual responses. In fact, we expect that large number of reviewers will reduce the inconsistency
of the rankings obtained by majority rule and hence will make the problem easier to solve.
In order to evaluate the contribution of our probing heuristic to the performance of the algorithm, a

version of the algorithm that uses a naive upper bound was created. Here, the prefix in each node is

http://iew3.technion.ac.il/Home/Users/golany/Download
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Table 3
Running time of the ranking algorithm with naive probing heuristic and percentage of the problems solved within 1800 s

Class � = 1 � = 4 � = 9

Avg. (max) % solved to Avg. (max) % solved to Avg. (max) % solved to
running time optimality running time optimality running time optimality

A <0.01 (0.02) 100 0.01 (0.08) 100 0.03 (0.11) 100
B <0.01 (0.02) 100 0.01 (0.09) 100 0.03 (0.11) 100
C 0.07 (1.08) 100 1.78 (12.95) 100 8.94 (28.19) 100
D 1.16 (23) 100 26 (573) 100 444 (1800) 88

arbitrarily extended by the remaining proposals instead of using the majority rule. We present the results
of this experiment in the table below.
By comparingTable 2with Table 3, one can observe that the probing heuristic does reduce the running

time. The effect is particularly dramatic for the larger instances with low or medium noise levels where
the probing heuristic is likely to catch optimal solutions at high levels of the branching tree.
We compared our method with the performance of the commercial Integer Programming Solver

MOSEK using the formulation we presented above. It turns out that MOSEK was capable of solving
all of our test problems but with significantly larger running times for the low noise instances. For exam-
ple the 60 proposals problems of class E with low noise were solved in 678 s on average and the moderate
noise instances (� = 4) were solved in over 1000 s on average.

4. Conclusions

The process of reviewing, evaluating and finally ranking research or research-relatedmanuscripts (e.g.,
submissions to academic competitions, research proposals) is an integral part of academia. This process is
based on peer review by researchers who usually perform this task on a voluntary basis. In many cases the
submissions are numerous and diverse in their subject topics and therefore require a large and diversified
group of reviewers or judges. Given the reviewers’partial evaluations in pairwise-comparison format, the
problem addressed in this paper is how to produce a fair and robust aggregate ranking of the submissions.
The pairwise-comparison representation of preferences is common in a wide range of practical ap-

plications, where opinions from respondents (voters, reviewers, consumers) can be obtained only in an
ordinal format. In the current application, where each reviewer sees only a subset of proposals, hence
only a partial ordering can be provided by each, this preference representation format is ideal. The theo-
retical issue of deriving a consensus of reviewers’ opinions, as expressed by the supplied partial pairwise
comparisons, has been studied extensively in the literature, dating back to the original work of Kemeny
and Snell[7]. Despite the wide applicability of the consensus idea, and the accompanying criterion of
minimizing the number of violations (in regard to reviewers’ preferences), little effort has been placed on
the actual development of effective algorithms for finding such a consensus. The principal difficulty lies
in the requirement that the matrix of final preferences must be transitive.
The current paper develops the requisite theoretical basis for deriving a minimum violations consen-

sus ranking. We present a branch-and-bound algorithm for computing a consensus among a set voter
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responses, and demonstrate its solution capability for a range of problem sizes, in terms of the numbers of
reviewers and proposals. This provides the user with a clear indication of the types of real world problems
that can be solved using this methodology. The algorithm and accompanying software described herein
are, thus, important tools for solving large-scale consensus ranking applications.
Themethodology developed herein applies to complete or strong ranking structures only.An important

area for further research is that of deriving a consensus ranking allowing for tied preferences.This problem
of weak rankings will be the subject of future investigation.
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