
Proof Labeling Schemes
Extended Abstract

Amos Korman
Dept. of Computer Science

The Weizmann Institute
Rehovot 76100, Israel

amos.korman@
weizmann.ac.il

Shay Kutten∗
Information Systems Group

Fac. of IE&M
The Technion

Haifa 32000, Israel

kutten@ie.technion.ac.il.

David Peleg∗
Dept. of Computer Science

The Weizmann Institute
Rehovot 76100, Israel

david.peleg@
weizmann.ac.il

ABSTRACT
This paper addresses the problem of locally verifying global
properties. Several natural questions are studied, such as
“how expensive is local verification?” and more specifically
“how expensive is local verification compared to computa-
tion?” A suitable model is introduced in which these ques-
tions are studied in terms of the number of bits a node needs
to communicate. In particular, it is shown that the cost
of verification is sometimes rather high, even higher than
the number of bits needed for a computation. On the other
hand, approaches are presented for the efficient construction
of schemes, and upper and lower bounds are established on
the cost of schemes for multiple basic problems. The paper
also studies the role and cost of unique identities in terms
of impossibility and complexity.

Previous studies on related questions deal with distributed
algorithms that simultaneously compute a configuration and
verify that this configuration has a certain desired property.
It turns out that this combined approach enables verifica-
tion to be less costly, since the configuration is typically
generated so as to be easily verifiable. In contrast, our ap-
proach separates the configuration design from the verifi-
cation. That is, it first generates the desired configuration
without bothering with the need to verify, and then han-
dles the task of constructing a suitable verification scheme.
Our approach thus allows for a more modular design of algo-
rithms, and has the potential to aid in verifying properties
even when the original design of the structures for maintain-
ing them was done without verification in mind.
Categories & Subject Descriptors:
F.2.2[Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems;

∗Supported in part by a grant from the Ministry of Science
and Technology.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’05,July 17–20, 2005, Las Vegas, Nevada, USA.
Copyright 2005 ACM 1-58113-994-2/05/0007 ...$5.00.

G.2.2[Discrete Mathematics]: Graph Theory;
B.8.1[Performance and Reliability]: Reliability, Testing, and
Fault-Tolerance.

General Terms: Algorithms, Reliability, Theory.

Keywords: distributed networks, proof labels, property
verification, self stabilization.

1. INTRODUCTION
This paper addresses the problem of locally verifying global

properties. This task complements the task of locally com-
puting global functions. Since many functions cannot be
computed locally [1, 21, 19], local verification may poten-
tially be even more useful than local computing - one can
compute globally and verify locally. We address the nat-
ural question of how expensive is local verification. More
specifically, we deal with the question of how expensive lo-
cal verification is in comparison to the computation itself.
In terms of both sequential time and distributed communi-
cation time, there exists evidence that verification is some-
times easier. For example, verifying that a given color as-
signment on a given graph is a legal 3 coloring is believed to
consume much less time than computing a 3 coloring [18].
In the context of distributed tasks, other measures of com-
plexity are often used, for example the amount of communi-
cation needed. Still, one can ask a similar natural question.
Assume that we are given a distributed representation of a
solution for a problem (for example, each node knows its
color but not necessarily the colors of others). It is required
to verify the legality of the represented solution (in the ex-
ample, to verify that the coloring stored by the nodes is a
legal 3 coloring). Does the verification consume fewer com-
munication bits than the computation of the solution (e.g.,
the 3 coloring) itself?

This paper investigates these questions in terms of the
number of bits of information that a node needs to convey
to its neighbors concerning its state. It is assumed that local
computation is free (although all our schemes use polyno-
mial time for the verification). In particular, we show that
the cost of verification is sometimes rather high even for
problems that appear simple. On the other hand, for cer-
tain other problems the cost of verification is only constant,
even for problems that may look complex.

The formal definitions are given in Section 2.1. Infor-

9

mally, we assume that the state of every node has already
been computed by some algorithm (in our example, the state
may consist of a color). The configuration (formed as the
collection of states of all nodes) is supposed to satisfy some
predicate. (e.g., “the colors of neighboring nodes are dif-
ferent”). Ideally, the number of information bits a node
conveys to its neighbors is as small as possible, even smaller
than its state. We refer to these information bits as the proof
label (or simply the label) of the node and study the task of
computing short labels.

To perform the verification, a node computes some local
predicate, considering only its own state, as well as the la-
bels of its neighbors (but not their states). In our example,
the local predicate of each node is that the color of the node
is different than those of its neighbors. The global configu-
ration predicate (e.g., “the coloring is legal”) is implied by
the conjunction of the local predicates. One may ask what
is the minimum size of a label of a node in such a scheme.

In addition to the theoretical appeal of such problems, one
practical justification comes from the area of self stabiliza-
tion. There, the network should converge to a legal configu-
ration (one satisfying the configuration predicate) from any
initial configuration. One approach is to partition a given
self stabilization task into two parts: the detection that the
current configuration is illegal, and the computation of a
new legal configuration. Again, a natural question is to ask
which of these problems is more expensive.

Numerous papers dealt with the task of designing algo-
rithms to compute a legal configuration. A much smaller
set of papers dealt with both verifying configurations and
with reaching legal ones, and they addressed a very limited
set of problems (most notably spanning trees and the prob-
lem of a general compiler to transform an lgorithm to be
self-stabilizing). In this paper we concentrate on the verifi-
cation part alone, study some of its basic properties, point
at impossibilities, develop a wide collection of natural build-
ing blocks and problems, and establish some complementary
lower bounds.

We note the following major difference between our model
and the ones used by the above self stabilization algorithms.
There, the design of the computation stage was intertwined
with that of the verification stage, and the designers sought
to design a computation process that will be easy for verifi-
cation, and vice versa. This approach may lead to low cost
local verification. However, this approach might also have
the disadvantage of making the design process less modular.
To simplify the design of algorithms, it is desirable to ad-
dress these needs separately. In this paper, we assume that
the distributed representation of the structure or function
at hand is already given, and the labeling we compute is re-
quired to verify this specific representation. This allows for
more modular algorithm design and frees the algorithm de-
signer to consider other goals when designing the distributed
representation. Our approach may sometimes be useful also
in verifying properties on existing structures, even when the
original design of those structures was done without verifi-
cation in mind.

To illustrate this difference between the models, let us
point out to one of our results, which states that local check-
ing sometimes requires labels that are longer even than the

states (such as the states used in previous local checking
methods). This occurs in the natural setting where ver-
tices are required to have distinct states. For example, this
can happen in an algorithm that hashes unique identities
of nodes into shorter unique states. In the case where the
underlying graph is an n-vertex path, the size of vertex la-
bels that are required in order to verify that all the states
are unique is Ω(n). This is longer than the state, which is
O(log n). On the other hand, were we allowed to compute
the states (rather than prove the given hashing), labels of
size zero would have sufficed in the case of unique identi-
ties: just have the state equal the identity. We note that
in many other cases, “small” labeling schemes exist even for
our stronger requirements from a scheme.

Related Work.The measure of the label size is related to
the problem of the communication complexity [22]. Some
of our results are for impossibility of tasks in anonymous
networks. Results of that nature concerning computation
(rather than verification) were presented in [14] and follow
up papers. Some constructions we use simulate a distributed
algorithm on every node; a related operation was used in [7].
Self stabilization was introduced in [15]. Self stabilization
by local detection, and by the similar variant local checking
was introduced in [8, 11, 9, 10]. These papers, as well as
many others, e.g. [16, 17, 6, 4, 5]) present self stabilizing
algorithms for computing trees using local detection. Using
a memory efficient distributed representation of a tree, in
which each vertex holds just a pointer to its parent, might
allow the distributed system to be in an undetected “illegal”
configuration (namely, the states of the vertices at a given
time may constitute a representation of a structure which
is not a spanning tree). For instance, the structure may be
“illegal” since the collection of pointers forms a cycle or a
collection of cycles, rather than a tree.

To overcome such illegal configurations, the algorithms
mentioned above were based on adding a variable to each
vertex, containing the distance of the vertex from the root of
the tree. (The resulting representation, containing both the
pointer and the distance variable, is clearly redundant). To
verify that the distributed redundant representation indeed
forms a tree, each vertex compares its own distance variable
with the distance variable of its parent. It is easy to see that
if the collection of pointers (one per node) induces a cycle,
then there must exist a vertex whose distance is not larger
than that of its parent. In the example, validity is verified
by checking the correctness of a global predicate based on
the configuration. The configuration predicate is that the
collection of pointers formed a tree. This is based, in turn,
on verifying a local predicate at each vertex, saying that if
the vertex points at a parent, then the distance variable of
the vertex is larger by one than the distance variable of the
parent.

In [12], lower bounds for silent stabilization are given. In-
formally, an algorithm achieves silent stabilization if after
stabilization no value is changed in any variable, so the only
activity is verifying that the states of the neighbors are the
same as the vertex “remembers” them. In a sense, in a state
of silent stabilization the vertices must be able to verify that

10

the system is indeed stabilized, and no further changes in the
variables are necessary. Hence, the lower bounds for silent
stabilization may sometimes translate to lower bounds for
proof labeling scheme. This is not always true though, and
in particular, one can construct proof labeling schemes for
problems for which no silent stabilization exists In addition,
lower bounds in our model do not necessarily imply lower
bounds in the model of [12]. Our typical lower bound is
for the task of verifying any configuration. In contrast, in
[12] it is implicitly assumed that the configuration is chosen
expressly in such a way that it will have a short label.

There are also some other differences between the models.
In [12, 11, 10] it is assumed that a vertex can read a state of
a link port of a neighboring vertex. We assume that all the
neighbors of a vertex v can see the same label of v. One can
say that this models a local broadcast media (e.g., radio)
versus point to point lines. The more abstract motivation is
that our modeling is intended to capture the total number
of information bits that need to be conveyed by a node for
checking purposes, disregarding the issue of which neighbor
they are to be communicated to. Consequently, constructing
positive results in our model may be harder than in the point
to point model. For example, in the latter model a vertex
can easily choose to communicate with just one neighbor.
In our model, in contrast, all the neighbors see the label,
hence it is harder to tell which of them is the target of the
communication. Nevertheless, we show some schemes for
problems that seem to need a targeted communication. Still,
the size of these schemes is much smaller than a size of the
identity of the neighbor.

In [13] it is assumed that a node can read the output of
near-by nodes. That is, only the part of the state meant to
be visible to the outside can be read by other nodes. (The
output is the part that appears in the specification of the
task to be performed.) As opposed to that, in the current
paper the labels often contain information that is not in-
tended as output, and does not appear in the specification
of the task. In some sense, this is necessary for efficient so-
lutions, since in [13] it is shown that with their assumption,
a very large memory is sometimes needed (e.g. for verifying
a spanning tree).

Our Results.This paper models and partially answers the
question: “how easy is the checking task by itself”, with
respect to basic building blocks in distributed systems. In
Section 2.1 we give some examples of schemes of different
information requirements (proof label size) and show that
for any size there exists a problem requiring this size.

In Section 3 we study factors that affect the cost of check-
ing. We study the role of unique identities in terms of impos-
sibility and complexity. We show that there exist problems
and graph families for which no labeling proof scheme ex-
ists if no unique identities are assumed. On the other hand,
we show a case (specifically, a path of n vertices) in which
the transition from anonymous networks to id-based is pos-
sible, yet the cost of the transition in this case is Ω(n). It is
interesting that even if unique identities are assumed, check-
ing whether the states are also unique can be still as costly
as Ω(n). This is higher than the cost of computing unique
states in this case.

Additional evidence to the importance of the role played
by identities in proof labeling schemes is provided by a re-
sult we present regarding identity invariability. The question
under study follows from a result of [1], showing in a particu-
lar setting that, intuitively, the actual value of the identities
does not matter. More specifically, the result of [1] deals
with functions that could be computed locally by a vertex,
just looking at states of the neighboring vertices. It is shown
therein that if there exists an algorithm to compute a cer-
tain function, then there exists an identities order invariant
algorithm, with the same complexity. Order invariant algo-
rithms only look at the relative order of the identities (i.e.,
“which identity is higher”) rather than at their actual value.
Our setting bears a lot of resemblance to that of [1]. Never-
theless, we show that this phenomena does not exist in our
model.

In Section 4 we study the cost of basic building blocks, and
show how to build verification systems systematically and
modularly. This leads to rather efficient schemes for Mini-
mum Spanning Tree, Maximum Matching, s−t Vertex Con-
nectivity, and some other basic problems. We also present
some constant size labeling schemes, even though our model
is weaker than previous models as explained above. Com-
ing back to the hardness of checking versus the hardness of
computing, we show that small schemes exist even for NP
Hard problems.

Due to lack of space, some proofs are deferred to the full
paper.

2. DEFINITIONS AND BASIC EXAMPLES

2.1 Definitions
We consider distributed systems that are represented by

connected graphs. The vertices of the graph G = 〈V, E〉
correspond to the nodes in the system, and the edges cor-
respond to the links. Denote n = |V |. Every node v has
internal ports, each corresponding to one of the edges at-
tached to v. The ports are numbered from 1 to deg(v) (the
degree of v) by an internal numbering known only to node v.
If G is undirected, then for every vertex v let N(v) denote
the set of edges adjacent to v. If G is directed, then for any
vertex v let N(v) denote the set of edges outgoing from v.
In either case, for every vertex v let n(v) = |N(v)|. Unless
mentioned otherwise, all graphs considered are undirected.

Given a vertex v, let sv denote the state of v and let
vs = (v, sv). A configuration graph corresponding to a
graph G = 〈V, E〉 is a graph Gs = 〈Vs, Es〉, where Vs =
{vs | v ∈ V } and (vs, us) ∈ Es iff (v, u) ∈ E. A fam-
ily of configuration graphs Fs corresponding to graph fam-
ily F consists of configuration graphs Gs ∈ Fs for each
G ∈ F . Let FS be the largest possible such family when
every state s is taken from a given set S. Unless men-
tioned otherwise, let S = {1, 2, · · · , O(n)}. We sometimes
refer to each state sv of a configuration graph as having two
fields: sv = (id(v), s′(v)). Field id(v) is v’s identity and has
O(log n) bits. When the context is clear we may refer to
s′(v) as the state of v (instead of to s(v)). A configuration
graph Gs is id-based if for every pair of vertices v and u
it is given that id(u) 6= id(v). A family of graphs whose

11

identities are arbitrary (including possibly graphs where all
identities are the same) is termed anonymous. An id-based
(respectively, anonymous) family is a family of id-based (re-
spectively, anonymous) graphs. Let Fall be the collection of
all strongly-connected and all undirected connected graphs
with O(n) vertices. Let Fundirected be the collection of all
undirected graphs with O(n) vertices. When it is clear from
the context, we use the term “graph” instead of “configura-
tion graph”, “id-based graph” or “anonymous graph”. We
may also use the notation v instead of vs.

Many of our results deal with a distributed representa-
tion of subgraphs. Such a representation is encoded in the
collection of the nodes’ states. There can be many such rep-
resentations. For simplicity, we focus on the case that an
edge is included in the subgraph if it is explicitly pointed at
by the state of an endpoint. That is, given a configuration
graph Gs, the subgraph (respectively, directed subgraph)
induced by the states of Gs, denoted H(Gs) (respectively,
D(Gs)), is defined as follows. For every vertex v ∈ G, if sv

includes an encoding of one of v’s ports pointing to a ver-
tex u, then the edge (respectively, directed edge) (v, u) is
an edge in the subgraph. These are the only edges in the
subgraph.

Consider a graph G. A distributed problem Prob is the
task of selecting a state sv for each vertex v, such that Gs

satisfies a given predicate fProb. This induces the problem
Prob on a graph family F in the natural way. We say that
fProb is the characteristic function of Prob over F .

This paper deals with adding labels to configuration graphs
in order to maintain a (locally checkable) distributed proof
that the given configuration graph satisfies a given predicate
fProb. Informally, a proof labeling scheme includes a marker
algorithm M that generates a label for every node, and a de-
coder algorithm that compares labels of neighboring nodes.
If a configuration graph satisfies fProb, then the decoder
finds the labels of neighboring nodes (produced by marker
M) “consistent” with each other. However, if the config-
uration graph does not satisfy fProb, then for any possible
marker, the decoder must find inconsistencies between some
neighboring nodes in the labels produced by the marker. It
is not required that the marker be distributed. However, the
decoder is distributed and local, i.e., every node can check
only the labels of its neighbors (and its own label and state).

More formally, A marker algorithm L is an algorithm that
given a graph Gs ∈ Fs, assigns a label L(vs) to each vertex
vs ∈ Gs. For a marker algorithm L and a vertex vs ∈ Gs, let
N ′

L(v) be a set of n(v) fields, one field per neighbor. Each
field e = (v, u) in N ′

L(v), corresponding to edge e ∈ N(v),
contains the following.

• The port number of e in v.

• The weight of e (if G is unweighted we regard each
edge as having weight 1)

• L(u).

Let NL(v) = 〈(sv, L(v)), N ′
L(v)〉. Informally, N ′

L(v) con-
tains the labels given to all of v’s neighbors along with the
port number and the weights of the edges connecting v to
them. NL(v) contains v’s state and label as well as N ′

L(v).

A decoder algorithm D is an algorithm which is applied sep-
arately at each vertex v ∈ G. When D is applied at vertex
v, its input is NL(v) and its output, D(v, L), is boolean.

Let f be some characteristic function of a problem over F .
Let Fs be some family of configuration graphs corresponding
to some family F . A proof labeling scheme π = 〈M,D〉
for Fs and f is composed of a marker algorithm M and a
decoder algorithm D, such that the following two properties
hold.

1. For every Gs ∈ Fs, if f(Gs) = 1 then D(v,M) = 1 for
every vertex v ∈ G.

2. For every Gs ∈ Fs, if f(Gs) = 0 then for every marker
algorithm L there exists a vertex v ∈ G so thatD(v, L) =
0.

We note that all the proof labeling schemes constructed in
this paper use a polytime decoder algorithm. The size of a
proof labeling scheme π = 〈M,D〉 is the maximum number
of bits in the label M(vs) over all vs ∈ Gs and all Gs ∈ Fs.
For a family Fs and a function f , we say that the proof size
of Fs and f is the smallest size of any proof labeling scheme
for Fs and f .

2.2 Basic examples
To illustrate the definitions, we now present basic proof

labeling schemes for some id-based and anonymous fami-
lies. Note that every proof labeling scheme that applies
to anonymous families applies also to the corresponding id-
based families. The converse in not always true, as shown
later. We give examples for problems with different proof
sizes. We also show that for any m there is a problem with
proof size Θ(m).

Our first example concerns agreement among all vertices.
Note that v’s neighbors cannot ‘see’ the state of v but they
can see v’s label.

Agreement in anonymous families Problem:.Assign all
the nodes identical states. Let S = {1, 2, · · · , 2m}.

Lemma 2.1. The proof size of Fall
S and fAgreement is Θ(m).

Proof: We first describe a trivial proof labeling scheme
π = 〈M,D〉 of the desired size m. Given Gs such that
fAgreement(Gs) = 1, for every vertex v, let M(v) = sv.
I.e., we just copy the state of node v into its label. Then,
D(v, L) simply verifies that L(v) = sv and that L(v) =
L(u) for every neighbor u of node v. It is clear that π is
a correct proof labeling scheme for Fall

S and fAgreement of
size m. We now show that the above bound is tight up
to a multiplicative constant even assuming that Fall

S is id-
based. Consider the connected graph G with two vertices
v and u. Assume, by way of contradiction, that there is a
proof labeling scheme π = 〈M,D〉 for F all

S and fAgreement

of size less than m/2. For i ∈ S, let Gi
s be G modified so

that both u and v have state s(u) = s(v) = i. Obviously,
fAgreement(G

i
s) = 1 for every i. For a vertex x, let Mi(x)

be the label given to x by marker M in Gi
s. Let Li =

(Mi(v),Mi(u)). Since the number of bits in Li is assumed
to be less than m, there exist i, j ∈ S such that i < j

12

and Li = Lj . Let Gs be G modified so that su = i and
sv = j. Let L be the marker algorithm for Gs in which
L(u) = Mi(u) and L(v) = Mj(v). Then for each vertex x,
D(x, L) = 1, contradicting the fact that f(Gs) = 0.

Note that the corresponding computation task, that of
assigning every node the same state, requires only states of
size 1.

By the above lemma, it is clear that for any m there exists
a family Fs and a function f with proof size Θ(m). We now
state a stronger claim, namely, that a similar result exists
also for graph problems (namely, problems where the input
is only the graph topology).

Corollary 2.2. For every function 1 ≤ g(n) ≤ n2, there
exists a graph problem on an id-based family with proof size
Θ(g(n)).

The following example concerns the representation of vari-
ous spanning trees in the system. The upper bound employs
an idea previously used in [7, 5, 6, 8, 17, 4], but overcom-
ing some technicalities arising from our model. For the lower
bounds, we had to establish a proof also for trees and forests
that are not spanning.

Trees in id-based families Problems:.We consider five
different problems, obtained by assigning states to the nodes
of G so that H(Gs) (respectively, D(Gs)) is a (respectively,
directed) (1) forest; (2) spanning forest; (3) tree; (4) span-
ning tree; (5) BFS tree of G (for some root vertex r). Let
fNo−cycles (respectively, f ′No−cycles) be the characteristic
function of either one of the five problems above.

Lemma 2.3. The proof size of Fall
S and fNo−cycles (re-

spectively, f ′No−cycles) is Θ(log n).

Actually, our lower bounds here can be shown even for
more restricted families.

Orientation in anonymous trees Problem:.Assign states
to the nodes of a tree so that D(Gs) induces an orientation
on the edges (towards some root that is not given explicitly).
Let Fanon−trees be the family of anonymous trees.

Lemma 2.4. The proof size of Fanon−trees
S and fOrient is

O(1).

Proof: We describe a desired proof labeling scheme π =
〈M,D〉. Let Gs be an anonymous tree s.t. fOrient(Gs) = 1.
Let r be the unique vertex whose state doesn’t encode one of
its ports. MarkerM labels each vertex v by its distance from
r calculated modulo 3. The decoder returns D(v, L) = 1 iff
the following two conditions hold for every neighbor u of v.

1. |L(u)− L(v)| = 1.

2. L(u) + 1 = L(v)(mod3) iff sv is an encoding of v’s
port leading to u.

The size of this labeling scheme is O(1) and it is clear that
if Gs satisfies fOrient(Gs) = 1 then D(v,M) = 1 at each
vertex v. Now suppose fOrient(Gs) = 0. If for every v, sv

is an encoding of one of its ports then since the underlying

graph G is a tree there must exist two vertices u and v
whose states point at each other. By (2), either D(v, L) = 0
or D(u, L) = 0 and we are done. Otherwise, there exists a
vertex r whose state is not an encoding of one of its ports.
If every v satisfies D(v, L) = 1, then all the states of r’s
neighbors point at r and by induction we get an orientation
of the edges towards r. Therefore fOrient(Gs) = 1, which
contradicts our assumption.

3. THE ROLE AND COST OF IDENTITIES
The bounds presented in [12] are similar for id-based and

anonymous families. Our model exhibits a distinction be-
tween the two families. Specifically, we show that certain
tasks are impossible in some anonymous families but possi-
ble in id-based families. We also show that the transition
from anonymous to id-based is very costly even on a path,
where this transition is possible. Moreover, even for id-based
paths the task of proving whether the states are disjoint is
costly. We also separate our model from the one of [1] that
was shown to be order invariant. In subsection 3.3, we show
that our model is not order invariant.

3.1 Anonymous versus id-based families
In this subsection we show examples of several problems

that do not have proof labeling schemes in certain anony-
mous families. In contrast, we show that every problem has
a proof labeling scheme in id-based families. Consider the
anonymous family Fanon−circles of circles with O(n) ver-
tices. Let f be the characteristic function of either one of
the following problems, where it is required to assign states
to the vertices of G such that:

1. there exists only one vertex v ∈ V such that sv = 1;
(informally, if the states are considered as identities,
then f checks whether the identity 1 occurs only once
in the graph)

2. the state of each vertex is the number of nodes in G;

3. sv 6= su for every pair of vertices u, v ∈ V (if the states
are considered as identities then f checks whether the
graph is id-based);

4. H(Gs) is a (spanning, BFS) tree of G.

The proof of the following lemma bears some similarities
to the proof, given in a different context, that the task of
leader election is impossible in anonymous networks [14].

Lemma 3.1. There is no proof labeling scheme for Family
Fanon−circles

S and Function f .

Lemma 3.2. For every problem there exists a proof label-
ing scheme in every id-based family.

3.2 Cost of identities
In the previous subsection we showed that giving a proof

labeling scheme for the problem of distinct identities is im-
possible for a family of anonymous circles. In this subsection
we show that although such a proof labeling scheme can be
given on anonymous paths, it is very costly. In fact we show

13

that the proof size of the problem of distinct states on an n-
node id-based path is Θ(n). More formally, let fDistinct be
the characteristic function of the following problem: assign
states to the nodes of G so that for every pair of vertices
u and v we have su 6= sv. Let Fpath be an id-based family
containing a single path G of n vertices.

Lemma 3.3. The proof size of Fpath
S and fDistinct is Θ(n).

Proof: In this extended abstract we show only the lower
bound. Let π = 〈M,D〉 be a proof labelling scheme for
Fpath

S and fDistinct. For notational simplicity let us name
these vertices from left to right by {v1, v2, · · · , vn} (these
are not the nodes’ identities). Let us first give a high level
description of the proof. We construct a large set X ′ of
configuration graphs, all corresponding to path G such that
for each Gs ∈ X ′, fDistinct(Gs) = 1. We choose X ′ so
that the pair of labels given by M to the two vertices in
the middle of the path must be different in each instance of
X ′. More formally, a divided permutation is a permutation
σ on [1, · · · , n] such that σ(n/2) = n/2 and σ(n/2 + 1) =
n/2 + 1. (Assume without loss of generality that n is even).
Fix svn/2 = n/2 and sv1+n/2 = 1 + n/2. For a divided
permutation σ, let Mσ(vi) denote M(vi) in the case where
for each 1 ≤ j ≤ n, sj = σ(j). For a divided permutation σ,
let Tσ = {σ(i) | 1 ≤ i ≤ n/2−1} and Qσ = {σ(i) | n/2+2 ≤
i ≤ n}. The proof uses the following claims.
Claim: Let σ1 and σ2 be two divided permutations such
that Tσ1 ∩ Qσ2 6= ∅. Then either Mσ1(vn/2) 6= Mσ2(vn/2)
or Mσ1(v1+n/2) 6= Mσ2(v1+n/2).
Proof: Assume that the claim does not hold. Let g be
the function over {1, · · · , n} that fixes n/2 and 1 + n/2,
identifies with σ1 on [1, · · · , n/2 − 1] and identifies with σ2

on [2 + n/2, · · · , n]. If we let svi = g(i), then obviously
fDistinct(Gs) = 0 since Tσ1 ∩Qσ2 6= ∅. Create the following
marker algorithm L. For 1 ≤ i ≤ 1 + n/2 , let L(vi) =
Mσ1(vi) and for 2 + n/2 ≤ i ≤ n, let L(vi) = Mσ2(vi).
For every divided permutation σ and vertex v, we have
D(v,Mσ) = 1. Therefore for all i s.t. 1 ≤ i ≤ 1 + n/2,
D(vi, L) = D(vi,Mσ1) = 1 and for 2 + n/2 ≤ i ≤ n,
D(vi, L) = D(vi,Mσ2) = 1, contradicting the correctness
of the decoder.
Claim: Let X be a set of divided permutations such that
for every σ1, σ2 ∈ X, Tσ1 ∩ Qσ2 6= ∅. There exists some
σ ∈ X so that either Mσ(vn/2) or Mσ(v1+n/2) has at least
1
2
· log |X| bits.

Proof: By the previous claim, for each σ ∈ X we get a
different pair (Mσ(vn/2),Mσ(v1+n/2)). Therefore, one pair
must consist of at least log |X| bits, yielding the claim.
Claim: There exists a set X of divided permutations so that
for every σ1, σ2 ∈ X, Tσ1 ∩Qσ2 6= ∅ and log |X| = Ω(n).
Proof: Let V̂ be the collection of all (n−2)! divided permu-
tations, and let Γ = 〈V̂ , Ê〉 be the graph over V̂ in which, for
two permutations σ1 and σ2, (σ1, σ2) ∈ Ê iff Tσ1 ∩Qσ2 = ∅.
The degree of each vertex in Γ is ((n/2−1)!)2−1. Relying on
the well known fact that every graph G with maximum de-
gree d has an independent set of size |V (G)|/d, we conclude
that Γ has an independent set X of size (n−2)!

((n/2−1)!)2
. Hence

log((n−2)!

((n/2−1)!)2
) = Ω(n). Since X is an independent set of Γ,

by definition of Ê, Tσ1 ∩Qσ2 6= ∅ for every σ1, σ2 ∈ X.

Combining the three claims we get an Ω(n) lower bound
for any proof labeling scheme for Fpath

s and fDistinct.
We note that if one designs the states and the labels to-

gether then the size of the scheme can be much smaller: As
mentioned, if Fpath

s is id-based, then the label size can be
zero. For an anonymous Fpath

s , one can choose the state of
vi to be i, and the size of these scheme is log n.

3.3 Variability of identities
Two assignments of identities to vertices of a graph are or-

der preserving if for every pair of vertices u,v, either id(u) >
id(v) in both id assignments, or id(v) > id(u) in both. An
algorithm is order invariant if its output is the same for ev-
ery two order preserving id assignments to the vertices of G.
The following is shown in [1] for their model. Let A be a
local algorithm for an id-based familty Fs which computes
a locally verified function f . Then there exists an order in-
variant algorithm A′ with the same complexities as A. I.e.,
A′ uses only the relative order of the identities. We now in-
vestigate the question of whether every problem with a proof
labelling scheme has also an order invariant proof labelling
scheme. We formalize our question as follows.

For a graph G = 〈V, E〉 ∈ Fs with n vertices, a legal
assignment to G is an assignment of disjoint identities to
V in the range {1, · · · , O(n)}. An invariant proof labelling
scheme is a proof labelling scheme π = 〈M,D〉 such that if
Gs ∈ Fs satisfies f(Gs) = 1 for every legal assignment to G,
then for every two order preserving legal assignments and
every vertex v, M(v) is the same under both assignments.

Lemma 3.4. There exist a family Fs and a boolean func-
tion f over Fs for which there exists a proof labeling scheme
but no order invariant proof labeling scheme.

Proof: Let F be the collection of cycles and let S =
{1, 2, · · · , O(n)}. Let f be a boolean function over FS such
that f(Gs) = 1 iff the number of vertices in G is sv for all
vs ∈ Gs. I.e., f checks whether the states of the vertices
of a cycle truly represent the number of vertices in it. It is
easy to see that there exists a proof labelling scheme for the
family of graphs FS and Function f . Assume, by way of con-
tradiction, that there also exists an invariant proof labelling
scheme π = 〈M,D〉 for this problem. Consider an n-node
cycle C so that for every vertex v in C, sv = n. Consider
the following four order equivalent identity assignments to
Cs.

(id1(v1), id1(v2), · · · , id1(vn−2), id1(vn−1), id1(vn)) =
(1, 2, · · · , n− 2, 4n− 1, 4n).

(id2(v1), id2(v2), · · · , id2(vn−2), id2(vn−1), id2(vn)) =
(2n + 1, 2n + 2, · · · , 3n− 2, 4n− 1, 4n).

(id3(v1), id3(v2), · · · , id3(vn−2), id3(vn−1), id3(vn)) =
(1, 2, · · · , n− 2, 3n− 1, 3n).

(id4(v1), id4(v2), · · · , id4(vn−2), id4(vn−1), id4(vn)) =
(2n + 1, 2n + 2, · · · , 3n− 2, 3n− 1, 3n).

Obviously, for every legal assignment to Cs, we have
f(Cs) = 1. Since π is an invariant proof labelling scheme to
this problem then for every vertex vi ∈ Cs, marker M gives
the same label in all these assignments. Denote this label
by l(i).

Consider a 2n-node cycle C′ in which sv = n for every
vertex v in C′. Obviously f(C′s) = 0. Consider the follow-

14

ing disjoint identity assignment to the vertices of C′.
(id(v1), id(v2), · · · , id(vn−2), id(vn−1), id(vn), id(vn+1),
id(vn+2), · · · , id(v2n−1, id(v2n)) =
(1, 2, , · · · , n− 2, 4n− 1, 4n, 2n + 1, 2n + 2, · · · , 3n− 1, 3n).
Now assign to the vertices of C′ the labelling L(vi+1(modn)) =
l. Then D(v, L) = 1 for every vertex v, contradicting the
correctness of π.

4. CONSTRUCTION METHODS
It may be unrealistic to expect to find an automatic way

for constructing efficient proof labeling schemes. Still, we
demonstrate two systematic approaches that can ease the
design in many cases. The first is the “distributed method”,
based on ‘imitating’ distributed algorithms. The second is
a modular construction approach based on the notion of
composition. All the graph families in the section are id-
based.

4.1 The distributed method
If there exists a distributed algorithm that generates ex-

actly the configurations satisfying some characteristic func-
tion f , then we show an upper bound on the proof size of
f .

From the more practical point of view, recall that a mo-
tivation for the model is a modular approach- given a con-
figuration, we need to verify it. In many cases, the given
configuration is generated by a distributed algorithm. Be-
low, we show how to generate a labeling scheme in every
such case. This demonstrates that ‘imitating’ an algorithm
is sometimes useful in generating a proof labeling scheme of
a small size. This approach is demonstrated in this section
by building a proof labeling scheme for minimum spanning
trees, of size O(log2 n + log n log W), where W is the maxi-
mum weight of an edge. This construction is based on imi-
tating the steps of a distributed algorithm for constructing
an MST. We needed to make some changes in the scheme to
reduce its size, and so that the algorithm nondeterministi-
cally now generates every possible MST, rather than just a
specific one. We note that we do not have a better scheme
for MST using a different method. Let us also comment
that we do not expect that the distributed method turns
out to be the best approach for every problem. This is be-
cause the distributed method bases the verification on the
computation, while exists evidence that the computation is
sometimes harder, see e.g. Claim 4.2.

Consider some f and Fs, and a distributed marker algo-
rithm for f and Fs. Assume that for every Gs ∈ Fs such
that f(Gs) = 1, there exists a run A′ of A such that: 1)
A′(G) = Gs, 2) the number of messages a vertex sends in
A′(G) is bounded from above by m0 and 3) each message has
O(log n) bits. Moreover, for every run A′(G), f(A′(G)) = 1.
If A is synchronous, assume also that for every G ∈ Fs, the
number of rounds in A(G) is bounded from above by p and
that the number of messages a vertex sends per round is
bounded from above by mp.

Lemma 4.1.

1. There exists a proof labelling scheme for Fs and f of
size O(m0(log m0 + log n)).

2. If A is synchronous then there exists a proof labelling
scheme for Fs and f of size
min{O(m0(log p + log n)), O(p ·mp log n)}.

In the following claim, the term ”polytime” is used in its
sequential time complexity meaning.

Claim 4.2. If NP 6= P then there exist problems that
have proof labelling schemes with polylog size and polytime
decoder algorithm but do not have a polysize proof labelling
scheme that is constructed in the distributed method.

Minimum Spanning Tree (MST) Problem:. Assign states
to the nodes of G so that H(Gs) is an MST for G.

Lemma 4.3. There exists a proof labelling scheme πmst =
〈Mmst,Dmst〉 for family Funderected

S and function fMST of
size O(log2 n + log n log W).

The use of the Lemma 4.1 does not suffice to prove Lemma
4.3, since known distributed MST construction algorithms
sometimes send Ω(Deg(v)) messages in some round for some
v. Substituting this in Lemma 4.1 would have translated this
to a size which is higher than the desired. Still, by imitating
most steps of a distributed algorithm [2], and using some
careful changes, we manage to give a proof labeling scheme
for MST with the desired size.

Proof Sketch:.Given some Gs ∈ Fundirected
s , similarly to

the proof of Lemma 2.3 we can verify that the subgraph in-
duced by the states of Gs is indeed a spanning tree for G,
so we only need to prove it is minimum. Denote this tree
by T . A subtree of T is a fragment. For each fragment
F , an outgoing edge of F is an edge e = (u, x) ∈ G where
u ∈ F and x /∈ F . A minimum outgoing edge of F is an
outgoing edge of F of minimum weight. It is easy to show
that every fragment F has a minimum outgoing edge that
also belongs to this specific MST, T . We now build T in p
phases that correspond to p fields in the labels. Intuitively,
our construction is rather similar to a known distributed
algorithm for constructing an MST with the following ex-
ceptions. First, the known algorithms construct some MST
while we prove specifically the given MST T . Second, in the
known distributed construction, each vertex ‘wastes’ a lot
of messages in each round in order to update its neighbors
of its new fragment identifier. These update messages do
not have to appear in the labels since in our model a ver-
tex v can ‘see’ its neighbors’ labels. Therefore, if for each
round each vertex encodes its fragment number, then each
vertex v can know at each round to which fragment each
of its neighbors belongs to. We now describe the construc-
tion more formally. For each vertex v, the field i in M(v)
(that corresponds to phase i) has three subfields denoted
M(v)i

1,M(v)i
2 and M(v)i

3. M(v)i
1 contains either an iden-

tity of one of v’s neighbors in T or the identity of v itself. For
every vertex v, M(v)11 contains just the identity of v. We
inductively show that for each i, Fi = {(v,M(v)i

1) | v ∈ V }
is a collection of distinct fragments where Flog n is T itself.
Obviously, F1 is just the collection V (with no edges). Let
F be a fragment in Fi. Let e(F) = (u, x) ∈ T be a minimum

15

outgoing edge of F such that u ∈ F . Let SPAN(F) be a
spanning tree for F rooted at u. For each vertex v ∈ F such
that v 6= u let M(v)i

2 = (id(u), id(y), dSPAN(F)(v, u)) where
y is v’s parent in SPAN(F) and let M(u)i

2 = id(x) (where
e(F) = (u, x)). For each vertex v ∈ F let M(v)i

3 = w(e)
where w(e) is e’s weight. Let M(v)i+1

1 = the second field of
M(v)i

2. Then following claim is trivial.

Claim 4.4. If Fi is a collection of distinct fragments then
so is Fi+1.

Each fragment in Fi+1 contains at least two fragments in Fi.
Moreover, the number of vertices in each fragment in Fi+1

is at least double the number of vertices belonging to the
smallest fragment in Fi. Therefore for p = log n, |Fp| = n.
It is easy to show by induction that for all i, if Fi is con-
tained in some MST then there exists an MST T ′ such that
Fi+1 is contained in T ′. Therefore, Flog n is an MST tree.
After verifying that Gs is indeed a spanning tree for G using
Dspan, the decoder Dmst needs to verify that the construc-
tion of T is as it should be.
For a vertex v and marker algorithm L, Dmst(v, L) verifies
that L(v)i

1 contains an identity of either one of v’s neigh-
bors in T or the identity of v itself and that for every vertex
v, L(v)11 contains just the identity of v. The first subfield
of L(u)i

2 for all vertices induces a partition of the vertices
into maximal connected components A1, A2, · · · so that for
each j and for each u ∈ Aj the first subfield of L(u)i

2 is
the same. We denote this value by r(A). Let A be the
maximal connected component that v belongs to. The de-
coder uses similar operations as Dspan to verify that the
second subfield of L(u)i

2 for all vertices u ∈ A forms a
spanning tree to the subgraph of G induces by A rooted
at the vertex r(A). Then the decoder verifies that all ver-
tices u ∈ A agree on L(u)i

3 denoted w(A), and that for
every u ∈ A, w(A) ≤ min{w(u, t) | (u, t) ∈ E, t /∈ A}. For
a vertex v such that v = r(A), the decoder verifies that
w(A) = ω(v, L(v)i

2).

Lemma 4.5. Every proof labelling scheme for Fundirected
S

and fMST has size Ω(log n + log W).

Proof: Since an MST is also a spanning tree we get by
Lemma 2.3 that every proof labelling scheme on Fundirected

S

and fMST has size Ω(log n). Therefore, we only need to
show that every proof labelling scheme on Fundirected

S and
fMST has size Ω(log W). Assume, by way of contradiction,
that there exists a proof labelling scheme π = 〈M,D〉 on
Fundirected

S and fMST of size less than 1
6
· log W−1

2
. Let Ci

be the 6-vertex cycle whose identities are ordered clockwise
from 1 to 6. Let the weight of each edge in Ci be 1 except
that ω(3, 4) = 2i and ω(6, 1) = 2i + 1. For each vertex 1 ≤
j < 6, let sj be the port number in vertex j leading from j to
j + 1. Obviously, fMST (Ci

s) = 1 for every i. Therefore, for
every i, marker M assigns a labelling assignment Li to the
vertices of Ci

s so that for each vertex v in Ci
s, D(v, Li) = 1.

Since the size of π is less than 1
6
·log(W−1

2
), we get that there

exist two cycles Ci and Ck so that i < k ≤ (W − 1)/2 and
Li = Lj . Let Cs be the same as Ci

s except that ω(3, 4) = 2k.
Obviously, fMST (Cs) = 0. However, by the correctness of
π on Ci

s and Ck
s we get that D(v, Li) = 1 for every vertex

v ∈ Cs, contradiction.

4.2 Composition
When constructing a proof labeling scheme for some prob-

lem Prob1, we want sometimes to use modularly a solution
to a different problem, Prob2. An explanation of the arising
technicalities in doing so appears in the full version. We
remark that in all the cases in this paper, the size of the
composition of proofs is asymptotically the same as the sum
of their sizes.

We now give proof labeling schemes for several problems,
some of which are used as components for others defined
through composition as described above. All graph families
mentioned below are id-based.

Compositions using a scheme for semi-group func-
tions:. The following proof labeling scheme is an important
building block for many other schemes. Out of the following
lemmas, the proof for Lemma 4.9 is given as an example for
a proof for a composition. Let G = 〈V, E〉 be a graph. A
function gr is a semi-group function if it is well-defined for
every subset of Vs, and is associative and commutative. For
example, gr(S) can be |S| or

P
v∈S sv. Let gr be a semi-

group function defined on all graphs Gs ∈ Fs. We assume
that the values of gr over all subsets of Vs and all graphs
Gs ∈ Fs are bounded from above by l. (For the lower bound
the values may be larger than l). Let fgr be the character-
istic function of the following problem: assign states to the
nodes of G so that the state of every vertex is the value
gr(Vs). The proofs of the following lemma uses the scheme
for a rooted spanning tree as a building block, and the value
gr(Vs) is recursively verified on the tree. In every vertex, we
verify gr of the subtree rooted at the vertex.

Lemma 4.6. For every semi group function gr, there ex-
ists a proof labeling scheme πgr for Fall

s and fgr of size
O(log n + log l).

Lemma 4.7. There exists a semi group function gr such
that every proof labeling scheme for family Fall

s and function
fgr must have size Ω(log n + log l).

Let fClique (respectively, fIndependent) be the characteris-
tic function of the following problem: assign states to the
vertices of G so that: 1) All the states have the same value
k, and 2) there exists a clique (respectively, independent set)
of size k in G.

In the following lemmas, we use a composition with πgr

(itself a composition with the scheme for spanning trees) to
count the number of nodes (in a clique, or an independent
set, or a minimum cut).

Lemma 4.8. The proof size of Fundirected
S and both func-

tions fClique and fIndepenent is Θ(log n).

Let Fs0−t0
S be the graph family that includes two given

nodes s0 and t0. Let fv−conn be the characteristic function
of the following problem: assign states to the nodes of G
so that each state contains a field k ∈ S that is the vertex
connectivity between s0 and t0.

Lemma 4.9. The proof size of family Fs0−t0
S and Func-

tion fv−conn is Θ(log n).

16

Proof Sketch:.We first construct a proof labeling scheme
π = 〈M,D〉 for family Fs0−t0

S and function fv−conn of size
O(log n). Let f1 and f2 be two boolean functions from
Fs0−t0

S so that f1(G) = 1 iff there exists k vertex disjoint
paths connecting s0 and t0, and f2(G) = 1 iff there exists
at most k vertex disjoint paths connecting s0 and t0. Obvi-
ously, fv−conn(G) = 1 iff f1(G) = 1 and f2(G) = 1. We first
give a proof labeling scheme πf1 for Fs0−t0

S and f1. The
part of the proof that all the nodes agree on the value of
k is the same as in Lemma 2.1. We concentrate on prov-
ing the other parts of f1. Let G be such that f1(G) = 1.
Let P1, P2, · · · , Pk be k vertex disjoint paths connecting
s0 and t0. Denote the vertices of Pi by (p0

i , p
1
i · · · , pli

i),
where s0 = p0

i , t0 = pli
i and pj+1

i is the next vertex af-
ter pj

i in Pi. For a vertex pj
i where 1 ≤ j ≤ li − 1, set

Mf1(p
j
i) = (i, j, id(pj+1

i)) ≡ L1(v), L2(v), L3(v). For every
other vertex v set Mf1(v) = ∅. Assume first that s0 is not
a neighbor of t0. The decoder Df1 verifies the following.

• At the special vertex s0, the decoder verifies that s0

has k neighbors, namely u1, u2, · · · , uk, s.t. L1(ui) = i.

• For every vertex v with nonempty label (in particular,
v 6= s0, v 6= t0), the decoder verifies that there is an
edge connecting v to u = L3(v) and that either u = t0
or (1) L2(u) = L2(v) + 1 and (2) L1(u) = L1(v).

If is easy to show that πf1 is a correct proof labeling scheme
for Fall

S and f1 of size O(log n).
If s0 is a neighbor of t0 then the label of s0 is the identity

of s0, the label of t0 is the identity of t0. In this case the
decoder in s0 needs to verify that t0 is a neighbor, and acts
as above for k − 1, and for G minus edge (s0, t0).

We now give a proof labeling scheme πf2 for Fs0−t0
S and

f2. Let us first assume that s0 and t0 are not neighbors.
Then, by Menger’s theorem, there exists k vertices u1, u2,
· · · , uk whose deletion from the graph G (along with their
edges) disconnects t0 from s0. We now mark each ui by ∗,
each vertex in the connected component of s by 0, and the
rest of the vertices by 1. Using πgr (Lemma 4.2) we first
verify that there are exactly k vertices marked with ∗. The
decoder then verifies the following.

• s0 is marked with 0.

• t0 is marked with 1.

• For every neighbor u of a vertex v, if both u and v
are not marked with ∗ then they are both marked the
same.

Now, if s0 and t0 are neighbors (which is locally detectable),
we do the same as above assuming our graph is G minus edge
(s0, t0) and f2 is with parameter k − 1 instead of k. Again,
it is easy to show that πf2 is a correct proof labeling scheme
for Fs0−t0

S and f2 of size O(log n). Combing π1 and π2 we
get a proof labeling scheme for Fs0−t0

S and fv−conn of size
O(log n).

If k is large then the lower bound follows from Lemma 2.1.
Otherwise, the lower bound follows from Lemma 2.3

In the definition of the problem we intentionally assumed
that s0, and t0 are not given as a part of the problem but
rather as a part of the definition of the graph family Fs0−t0

S .

Otherwise the lower bound would have immediately followed
from lemma 2.1.

Note that the upper bound for k vertex connectivity is
independent of k. Using similar methods we can construct
proof labeling scheme for k- the flow between s and t, with
size O(k log n). Let W be the weight of the “heaviest” edge
in a graph (1 for unweighted graphs). We also have a tight
bound of size θ(log n+log W) for schemes to verify the diam-
eter on trees, and to approximate the diameter from below
in general graphs.

To demonstrate a combination of the distributed method
and of a composition of proof labeling schemes we first present
the following scheme (itself both a composition and a build-
ing block), in order to use it in a later composition. The
following example uses techniques based on dynamic pro-
gramming.

MaximumMatching on a path Problem:.Let P be the
horizontal path of n vertices v1, v2, · · · , vn. (The enumera-
tion is from left to right and does not necessarily correspond
to the identities of the vertices; i.e., id(vi) is not necessar-
ily i). For every edge ei = (vi, vi+1), let ω(ei) denote the
weight of ei. A set H of edges of P is called a matching
if no two edges e, e′ ∈ H share a common node. For such
set, denote by ω(H) =

P
e∈H ω(e). Let m = max{ω(H) |

H is a matching of P}. A matching H of P is called a max-
imum matching if ω(H) = m.

Assign states to the nodes of G so that H(Gs) is a max-
imum matching of G. Let Fpaths be the collection of all
weighted paths with O(n) vertices and let S = {1, 2}. Let
m = max{ω(H) | H is a matching of E}.

Lemma 4.10. The proof size of Fpaths
S and fMatch is

Θ(log n + log m).

Proof: We show the existence of a proof labeling scheme
πA = 〈MA,DA〉 for Fpaths

S and fMatch of size O(log n +
log m). The proof of the lower bound is omitted from this
abstract. Let P = (v1, v2, · · · , vn) be the given path. Let Gs

be such that fMatch(Gs) = 1. First, by composing with the
proof labeling scheme presented in the proof of Lemma 2.4,
we may assume an orientation on the path. I.e., v1 ‘knows’
it is the leftmost vertex and each other vertex ‘knows’ which
outgoing edge connects it to a vertex on its left. Second, by
composing with πgr and with the proof of Lemma 2.1, we
may assume that all vertices ‘know’ and agree on the value
ω(H), where H = H(Gs). Since it is easy to verify locally
that H is indeed a matching, it is enough to show that we
can design a proof labeling scheme proving ω(H) = m. We
calculate m in the following manner. Let Pi be the prefix
subpath (v1, v2, · · · , vi). Let Ai be the maximum value over
all matchings Pi that exclude edge ei−1. Let Bi be the
maximum value over all matchings in Pi that include edge
ei−1. Note that Ai+1 = max{Ai, Bi}, Bi+1 = Ai + ω(ei+1)
and m = max{An, Bn}. LetM(v) = (Ai, Bi). By the above
observations, given the label of the vertex to its left and the
weight of the corresponding edge, each vertex vi can verify
that its label is indeed (Ai, Bi). In addition, the rightmost
vertex vn verifies that ω(H) = max{An, Bn} and we are
done.

17

The following example illustrates a combination of the dis-
tributed method and a composition of proof labeling schemes.
Let T = 〈V, E〉 be a weighted tree. Let F trees be the col-
lection of all weighted trees with n vertices. Denote by an
approximation function, a function Approx over F trees, such
that Approx(T) is a nonempty set of matchings of T with
the property that for every H ∈ Approx(T), ω(H) ≥ m/2.

A 2-approximation for Maximum matching on a tree
Problem. Assign states to the nodes of the given tree T
such that the subgraph induced by them is in Approx(T).
The following lemma doesn’t assert that every 2-approximation
maximum matching on a tree can be proven but rather that
we know how to prove a specific 2-approximate maximum
matching. This demonstrates the need in our model to adapt
the labeling to given states assigned by existing algorithms.
The construction also demonstrates both modular composi-
tion and the distributed method.

Lemma 4.11. There exists an approximation function H
and a proof labeling scheme πA = 〈MA,DA〉 for F trees

S and
fApprox of size O(log n + log m).

Proof: In [3], given a tree T , they show how to dis-
tributely build a collection P = P(T) of vertex disjoint paths
with a constant number of rounds and a constant number
of messages each vertex sends per round, such that m ≤P

P∈P ω(P). For every path P ∈ P, a maximum matching
MAX(P) for P satisfies ω(MAX(P)) ≥ ω(P)/2. Therefore
the collection of edges MAX(T) = ∪P∈PMAX(P) satisfies
ω(MAX(T)) ≥ m/2. Therefore H(T) = {∪P∈PMAX(P) |
MAX(P) is a maximum matching on P} is an approxi-
mation function. By Lemma 4.1, there exists a proof label-
ing scheme of size O(log n) so that each vertex in T knows
which of its edges belong to P. On each path P ∈ P (re-
call that these paths are vertex disjoint), we compose with
the proof labeling scheme shown in Lemma 4.10 applied to
path P . Altogether, we have a proof labeling scheme of size
O(log n + log m) for F trees

S and fApprox as desired.

5. REFERENCES
[1] M. Naor and L. Stockmeyer. What can be computed

locally? Proc. 25th ACM Symp. on Theory of
Computing, pages 184–193, 1993.

[2] D. Peleg. Distributed Comuting: A Locality-Sensitive
Approach. SIAM, 2000.

[3] M. Wattenhofer and R. Wattenhofer. Distributed
Weighted Matching. Proc. DISC, pages 335–348, 2004.

[4] A. Arora and M. Gouda. Distributed reset (extended
abstract) Proc. 10th Conf on Foundations of Software
Technology and Theoretical Computer Science,
316-331, November 1990, Bangalore, India.

[5] S. Aggarwal and S. Kutten. Time Optimal
Self-Stabilizing Spanning Tree Algorithms. Proc. 13th
Conf on Foundations of Software Technology and
Theoretical Computer Science, 1993, 400-410.

[6] B. Awerbuch, S. Kutten, Y. Mansour, B.
Patt-Shamir, and G. Varghese. Time optimal
self-stabilizing synchronization. Proc. STOC 1993,
652-661.

[7] Y. Afek and S. Dolev. Local Stabilizer. J. Parallel
Distrib. Comput. 62(5)s. 745-765 (2002).

[8] Y. Afek, S. Kutten, and M. Yung. The Local
Detection Paradigm and Its Application to
Self-Stabilization. Theor. Comput. Sci. 186(1-2):
199-229 (1997).

[9] B. Awerbuch, B. Patt-Shamir, and G. Varghese.
Self-Stabilization By Local Checking and Correction.
Proc. FOCS 1991, 268-277.

[10] B. Awerbuch, B. Patt-Shamir, G. Varghese, and S.
Dolev. Self-Stabilization by Local Checking and
Global Reset. Proc. WDAG, 1994, 326-339.

[11] Baruch Awerbuch, George Varghese. Distributed
Program Checking: a Paradigm for Building
Self-stabilizing Distributed Protocols. In Proc. FOCS,
1991, 258-267.

[12] S. Dolev, M. Gouda, and M. Schneider.
Requirements for silent stabilization. Acta
Informatica, 36(6): 447-462, 1999.

[13] Beauquier, J., Delaet, S., Dolev, S., and Tixeuil, S.,
“Transient Fault Detectors”. Proc. of the 12th
International Symposium on DIStributed Computing,
Springer-Verlag LNCS:1499, pp. 62-74, 1998.

[14] D. Angluin. Local and global properties in networks of
processes. In Proc. 12th ACM Symp. on Theory of
Computing, 82–93, May 1980.

[15] Edsger W. Dijkstra. Self-stabilizing systems in spite of
distributed control. Comm. ACM, 17(11):643–644,
November 1974.

[16] S. Dolev, A. Israeli, and S. Moran. Self-stabilization of
dynamic systems assuming only read/write atomicity.
Distributed Computing Journal, 7,1, 3-16, 1993.

[17] S. Dolev, A. Israeli, and S. Moran. Uniform dynamic
self-stabilizing leader election. IEEE Trans. Parallel
Distrib. Syst. 8(4): 424-440 (1997).

[18] M. Garey and D. Johnson. Computers and
Intractability. W.H. Freeman and Company, New
York, 1979.

[19] Nathan Linial. Distributive Graph Algorithms-Global
Solutions from Local Data. FOCS 1987: 331-335.

[20] Z. Manna and A. Pnueli. Models for reactivity. Acta
Informatica, 3:609–678, 1993.

[21] Fabian Kuhn, Thomas Moscibroda, Roger
Wattenhofer. What cannot be computed locally!
PODC 2004: 300-309.

[22] Andrew C. Yao. Some Complexity Questions Related
to Distributed Computing. Proc. of the 11th ACM
Symposium on Theory of Computing (STOC), 1979,
209-213.

18

