
Abstract

Efficient Deadlock-Free Routing

Baruch Awerbuch * Shay Kutten ~ David Peleg $

This paper deals with store-and-forward

deadlocks in communication networks. The

goal is to design deadlock-free routing

schemes with small overhead in communica-

tion and space. Our main contribution is de-

signing efficient protocols that are superior to

existing ones in terms of their performance.

*Dept. of Mathematics and Lab. for Com-

puter Science, M. I.T., Cambridge, MA 02139. Sup-

ported by Air Force Contract TNDGAFOSR-86-

0078, ARO contract DAAL03-86-K-0171, NSF con-

tract CCR861 1442, and a special grant from IBM.

Part of the work was done while visiting IBM T.J.

Watson Research Center.
tIBM T*J. Watson Research center, Yorktown

Heights, NY 10598.

tDepartment of Applied Mathematics and Com-

puter Science, The Weizmann Institute, Rehovot

76100, Israel. E-mail: peleg@wisdom.bitnet. Sup-

ported in part by an Allen Fellowship, by a Bantrell

Fellowship and by a Walter and Elise Haas Career

Development Award. Part of the work was done
while visiting IBM T.J. Watson Research Center.

Permission to copy without fee afl or part of this material is granted
provided that the copiesare not made or distributed for direct com-
mercial advantage, the ACM copyright notice and the title of the
publication and hs date appear, and notice is given that copying is by

permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee andlor specific permission.

@ 1991 ACM 0-89791-439-2/91/0007/0177 $1.50

1 Introduction

The store-and-forward deadlock is one of the

major concerns in the design of routing pro-

tocols for communication net works. Infor-

mall y, a store-and-forward deadlock occurs

when messages are “stuck” at some set of

nodes, since all the buffers of these nodes are

full, and each of the messages in these buffers

needs to be forwarded to some other node in

the set. Thus in order to move any of the

messages, some buffer must be emptied, and

for this some other message must be moved,

and so on. In day-to-day life, this is analo-

gous to car “gridlocks” that often occur on

a busy intersection. Avoidance or fast reso-

lution of such store-and-forward deadlocks is

essential for efficient

network resources.

This problem has

ied in the literature.

utilization of available

been extensively stud-

Roughly speaking, the

proposed solutions can be classified into two

main cat egories. The first involves solutions

attempting to avoid the occurrence of dead-

locks. This is done, for instance, by dividing

the buffer pool into buffer classes and utiliz-

ing these classes so as to prevent deadlocks

[Gop84, MS80, TU81]. Some of these solu-

tions are based on restricting the family of

allowed routes in order to avoid deadlocks

(say, by forwarding packets according to an

acyclic buffer graph).

177

The second approach to handling store-

and-forward deadlocks, usually referred to as

“deadlock detection / resolution”, is based on

the philosophy that it may be better to “ig-

nore” the problem as long as it doesn’t harm

us (and thus let the network run into dead-

locks from time to time), and rely on efficient

mechanisms for detecting deadlocks and re-

solving them (for inst ante, by dropping some

of the packets involved in the deadlock). Nu-

merous solutions based on this strategy were

proposed in the literature; a partial list is

[AM86, BT84, CM82, CJS87, Gop84, G81,

JS89], [MM79, MM84, 0be82].

We feel that those distinctions are some-

what artificial. The ultimate goal is always

the same, namely to route the messages to

their destinations, without wasting too much

of the network resources. So the only rele-

vant measures for comparison of the routing

protocols are their complexities. The stan-

dard complexity measures for network proto-

cols are communication, time, and space; let

us define these measures in our cent ext.

We make the standard assumptions of an

asynchronous point-to-point communication

network, cf. [GHS83]. The time delay of a

packet is the total time it takes since the

packet is entered into the subnet until it is

delivered at the destination. For computing

the time delay only we make the (common)

normalization assumption that the maximum

time it take for a packet to traverse a link

is one unit of time. The inherent commu-

nication requirement of a packet is the dis-

tance from its source to its destination, i.e.,

the number of hops it needs to perform until

it arrives its destination. The actual commu-

nication of a protocol is the actual number

of messages sent during its execution. The

communication overhead (or amortized com-

munication cost) of a routing protocol is its

worst case ratio of actual to inherent commu-

nication, where the maximum is taken over

all possible sequences of message arrival his-

tories. Space is measured by the number of

buffers used in each node. We omit a more

formal definition from the abstract.

In this paper we restrict ourselves to what

we may call non-obtrusive solutions. These

are algorithms obeying the following two re-

quirements. First, they do not interfere

with the routing process, and are limited to

scheduling decisions. (We use the common

assumptions that either the routes are car-

ried in the packet headers, or the next node

on the route can always be computed locally.)

The second requirement excludes the possi-

bility of dropping packets. This possibility is

viewed as a rather serious drawback. Indeed,

packets that have been dropped are eventu-

ally returned back into the system, possibly

creating further future deadlocks, and thus

making it difficult to assess the amount of

progress ultimately made in the network.

In this paper, we focus on the trade-off

between communication and space complex-

ities of deadlock-free routing algorithms. We

are not aware of any previous work explicitly

attempting to address this issue. For com-

parison, let us consider two typical schemes

among the ones listed above, namely, those

of [JS89, MS80]. These two schemes obey

the non-obtrusiveness requirements postu-

lated earlier.

Let us first discuss the communication-

efficient schemes. Several of the solutions de-

scribed earlier require Q(n) buffers per node

in an n-vertex network (e.g. [Gop84, MS80]).

This is usually unreasonable, and will become

more unreasonable in the future, as network

sizes are expected to outgrow even the most

advanced buffer technology. (Currently, net-

works use typically less than 50 buffers per

node.) Moreover , even though memory in

general becomes less expensive, buffers at in-

termediate nodes in fast networks are not a

part of the (relatively slow) general purpose

178

computer with its large memory. Instead,

they are a part of a “slim” and fast switch.

Putting a lot of the fastest memory on this

switch (and in such a way that it remains

fast and cheap) is not easy. Indeed, other

papers (such as [CJS87, JS89]) pointed out

this problem, and proposed solutions using

only a small number of buffers per node.

Although both schemes seem very reason-

able time-wise, and may behave well in most

common situations, we note the surprising

fact that it is possible to devise simple exam-

ples demonstrating that both schemes require

time that is exponential in n in the worst

case. It is interesting to note that the number

of buffers is not at all the bottleneck leading

to exponential time in these examples. In-

tuitively, the cause is the fact that the next

packet to be forwarded is selected on a solely

local basis. Any additional number of buffers

will not prevents these bad scenarios, nor are

we aware of an obvious way to circumvent

this problem.

An example of a communication-efficient

scheme is the algorithm of [MS80] which has

only 0(1) communicant ion overhead, i.e., is

communication-optimal. However, this algo-

rithm uses O(n) buffers, and thus is memory-

inefficient. This scheme can be contrasted

with the memory-efficient algorithm (0(1)

buffers) of [JS89], which has communication

overhead $_I(n) in the worst case.

This immediately suggests the existence of

some tradeoff between communication and

space complexities. Is this tradeoff real? Our

results clearly indicate that even if it is, its

manifestation is not in the polynomial range.

In this paper we present an algorithm

whose communication overhead is 0(1) but it

requires O(log n) buffers per node. We com-

ment that a modification of this algorithm

(omitted from this abstract) results in reduc-

ing the space overhead

node, at the expense of

to” O(1) buffers per

increasing the com-

Author Commun. Space

[MS80] 0(1) O(n)

[JS89] O(n) 0(1)

This paper o(1) O(log n)

This paper O(log n) o(1)

Figure 1: Comparison of our algorithms with existing

ones.

municat ion overhead to O(log n). (See !i?aL-

ble 1.) Thus our results exhibit the same

kind of tradeoff between the communication

overhead and the number of buffers needed

as that of [MS80] vs. [JS89], although with

considerably lower complexities.

2 The hierarchical algo-

rithm

2.1 Overview of the Algorithm

First let us discuss flow control. Notice that

if packets are sent only to, say, d destina-

tions, who may each have only one incoming

edge, then the network can at best deliver d

packets per time unit. If the rate at which

new packets are introduced into the network

is higher than the network delivery rate, tha,n

the waiting time will grow to infinity, and

so will the requirements for buffers. This is

solved in most communication networks by

flow control. Specifically, we shall let every

node have a window of size 1 on the average.

That is, in our algorithm, a packet that is de-

livered to its destination permits some node

(not necessarily its source or destination) ito

int reduce a new packet. The mechanism for

guaranteeing this behavior will be discussed

later. In fact, this restriction can be relaxed,

e.g., every node v may have a window of si!ze

one (or of polynomial size) on the average

with respect to each possible destination of

179

v‘s packets.

Let us now proceed with a description of

the entire forwarding process, beginning with

a high-level overview.

Each node is internally organized as a hi-

erarchy of 6 levels, for 6 = log n + 1. In par-

ticular, each node has 36 buffers, partitioned

into 6 levels, with level i owning two regu-

lar buffers A; and I?i and a special elevator

buffer Ei, for 1< i <6.

The packet is packed in a token 7’ (in level

1), whose task is to carry the packet to its

destination and terminate. A token in level

i proceeds using only buffers of level i. Let

us first give the simplified idea of the action

taken when the token cannot proceed (be-

cause of the lack of an empty buffer in the

next node). The way the idea is implemented

(to be described later) comprises the main

the technical difficulty of this paper.

Intuitively, a token of level i “represents”

2i basic tokens (of level 1). Hence the higher

the level, the less congested the buffers are.

Thus when two tokens of level i find them-

selves “stuck” at two buffers Ai, Bi of the

same vertex, say w, they perform a concep-

tual “merge” operation in which one of them

is promoted to proceed in buffers of level

i + 1. In order to preserve the invariant, the

other token remains locked in the rendezvous

vertex w, (in fact, both buffers A; and l?i

remain locked, as part of the flow control

mechanism), until it receives an appropriate

“permit” to proceed. Such a permit can be

thought of as informing the locked token that

its partner has arrived its destination and ex-

ited the network. The permit thus allows the

locked token to become active again and pro-

ceed in level i + 1 as well. However, the two

buffers Ai and .Bi of vertex w remain locked,

until another permit arrives (intuitively sig-

nifying the arrival of the second token to its

destination) and releases them.

This simplistic description creates an al-

gorithm that is hard to implement. More

specifically, the task of freeing the locked to-

kens is tricky. It would seem that a permit

message (or process) sent to free them, must

itself use buffers. An attempt to solve this

using the same “go up one level” strategy

may result in increasing the communication

complexity. Intuitively, the reason is that if a

“freeing message” locks another “freeing mes-

sage” and goes up a level, it is later required

to send yet another freeing message that will

free the locked freeing message, and so forth.

It turns out that such a strategy implies a

communication stretch of log n.

In order to overcome this problem we re-

lax the releasing paradigm described above.

The idea is to view a permit as a “general

purpose currency”, or check, rather than a

dedicated process. I.e., we do not require

a level i permit generated by some token T

to free the particular token T’ with whom T

was merged. Rather, the permit can be used

to free any other token that happens to be

locked at level z on the permit’s way.

This approach enables us to treat permits

“unanimously”, and hence makes it possi-

ble to manipulate, keep track of and trans-

fer permits “bunched” together, simply keep-

ing account of the number of permits at each

level. This in turn enables us to drastically

limit the amount of information carried by a

CHECK. For example, there is no need for

a CHECK to carry the name of the token

it is going to release, or the node in which

it resides, or a route to that node. On the

other hand, it should be clear that this re-

laxat-ion has to be carefully devised, in order

to prevent starvation of locked tokens.

Technically, the C.HECK approach im-

plies the following modifications. Instead of

releasing separate tokens, we have counters

(called Debt) on every edge., specifying, in-

tuitively, “how much freeing work remains to

be done in the direction of e“. Similarly we

180

have counters (CR12.ZllZ”s) specifying “how

much freeing work” we are now permitted to

do. Suppose now that a CHECK wishes to

enter a node, while another CHECK has not

left the node yet. The new CHECK does

not require another buffer. Instead, it enters

(using the single temporary communication

buffer in the node) and changes the value of

a CREDIT counter. The node knows how

many CHECK processes reside in it by the

values of the CREDIT counters. These pro-

cesses always enter a node while they are in

the same state. Thus no buffers are needed

to store the information carried by these pro-

cesses. (The process itself, of course, does not

require storage, as long as its state informa-

tion is stored implicitly, as described above.)

The algorithm uses the values of the Debt

counters in order to route the CHECK pro-

cesses. In” Section 3 we analyze the process

and prove that all tokens are indeed found

and released.

2.2 Detailed description

The flow control mechanism has to tell v

when it may introduce another packet into

the network. This will be done by setting a

flag called Get-Msg. We assume that the in-

ternal node process responsible for introduc-

ing new packets may be invoked only when

Get-Msg=Ready. The first action taken af-

ter allowing a new packet into the network is

to set GetMsg to Waiting. The resetting of

Get-Msg to Ready will be done by a CHECK

process.

Each new packet is inserted to buffer El of

the origin vertex. The packet is wrapped in

a frame T called a token. This token is in-

dividually carried by a process .TOKE~(l’).

Token 7’ has the format

T = (Packet, p, Level, Status, Temp),

where p is the route description, Level is an

indicator of the level of the packet, Status

is a status indicator, which may assume one

of four possible values, to be described later

on, and Temp is a temporary variable. We de-

fine Dest(p) as the destination of the packet,

and Next(p, v) executed in a vertex v (whiclh

occurs in p) to be the vertex appearing just

after v in p.

Buffers may be in one of the following

modes: Empty, Active, Stuck and Locked’.

Tokens may be in one of the following modes:

Active, Stuck and Locked. When a buffer

contains no token, its status is either Empty

(meaning, available for accepting an arriving

token) or Locked (meaning, empty but not

ready to accept a new token). When a buffer

contains a token, its status is identical to that

of the token.

In addition to the buffers, each node v

maintains also a set InQueue(i) on every level

i, and a debt counter DebtV(u, i) on ever~y

level z for every neighbor u.

Let us now proceed with a more detailed

description of the process of forwarding a to-

ken. The basic mode of operation for a token

is the Active mode. A level-i token enters

this level by moving from some level i – 1[

buffer into the “elevator” buffer Ei. While in

Active mode, a token travels in the buffers

Ai, Bi.

A token T travels as follows. Suppose that

T is currently in buffer Ai of a vertex v ancl

it needs to proceed to a neighboring vertex

T-O= Next(p, v). Then T tests whether w is

ready to accept it. Two conditions need tc)

be satisfied for that to happen. First, w has

to have an Empty buffer Ai or Bi at level i.

Secondly, w manages a round-robin ordering

on its incoming edges, and it has to be the

turn of the incoming edge from v. (For clarity

the code uses a simple implementation of the

above. The communication can be improvecl

by a constant factor.)

If both tests are answered positively, then.

181

2’ traverses the edge and enters the appro-

priate buffer at w. The buffer Ai in v emp-

tied by T now switches to state Empty. This

buffer may now be used in order to accom-

modate another token waiting to enter v on

level i. The accepting buffer at w switches its

mode to Active. Further, the debt counter

DebtW(v, i) at w is increased by 1.

Now suppose that there is no Empty buffer

in w (or it is not the turn of the edge from v to

enter w at that level). Then T acts as follows.

It first adds itself to the queue InQueue(i) at

w. This is the queue of neighbors with tokens

that are currently awaiting entrance to w on

level i. T then checks to see whether there

is another token waiting in another buffer at

level i of v. If not, Then 7’ has to change its

status to Stuck and wait until it is released

by some other process.

The releasing task is carried out “auto-

matically”. I.e., there is a background “de-

mon” process at every vertex, that is act i-

vated whenever some buffer becomes Empty,

examines the appropriate InQueue queue and

initiates the release of the Stuck token that is

at the top of the queue waiting for this buffer

(if there is such a token). The code for this

trivial release process is omitted from the ab-

stract.

In case there is a second token T’ waiting in

another level-i buffer of v, then these two to-

kens perform a “merge” operation as follows.

The two buffers switch into Locked status,

with one of the tokens, say T’, remaining in

its buffer and switching into St at us(T’) =

Locked as well. The other token, T, in-

creases its level to Level(T) + i + 1. Conse-

quently, it moves into the elevator buffer on

that level, Ei+l, and proceeds in level i + 1

buffers. For the purpose of unified descrip-

tion and proof, we introduce an “imaginary”

internal edge at node v, connecting its i ‘th

and i + 1‘st levels, and associated with a vari-

able of internal debt Int Debt.(i). This vari-

able Int DebtV (i) is now incremented by one.

Next let us consider the time when a to-

ken T has reached its destination. It first

delivers the packet Packet to the vertex pro-

cessor, and then creates a CHECK process

on level Level(T), and terminates. The task

of the check process is essentially to release

the tokens that T has locked on its way. (It

may, however, be diverted and end up releas-

ing some other Locked token it finds on its

way back at the same level.)

A CHECK process C7 on level i >1 at ver-

tex v proceeds as follows. lt considers every

edge (v, u) such that DebtV(u, i) >0, and also

the internal edge we defined, if IntDebtV(i)

is larger than zero. Process C chooses the

next such edge by a round robin policy among

the edges of v, i.e., the edge served now goes

to the end of the line to await its next turn.

Such a queue is kept for every level separately

(that is, the next edges to be served on two

different levels may be different).

If the chosen edge is not the internal one

(but some edge (v, u)), then the CHECK

process C reduces the DebtV(u, i) counter of

the edge by 1 and traverses this edge to u.

Now consider the case that the internal edge

is chosen. This means that a debt of level

i was generated locally at this vertex, This

could have happened in one of two ways. If

Level = 1, then the internal edge is selected

only if Get_Msg = Waiting. This represents

a packet that has been introduced into the

network at this node. Otherwise, the debt

was generated through a merge operation be-

t ween two token processes in level i – 1.

Let us first consider the second case. In

this case, the buffers in level i – 1 are neces-

sarily Locked. There are now two sub-cases

to consider. If there is a, token T’ in one of

these buffers, then the process C releases this

token (i.e., sets Status(T’) = Active), sup-

plies it with Level = i, and terminates. Note

that the process leaves both buffers Locked,

182

although both are now empty. Otherwise,

both level i – 1 tokens merged at this vertex

have already been delivered. Inthis case the

process C releases both buffers at level i – 1

(i.e., sets status(Ai_l) = status(13i_l) =

Empty), spawns two new CHECK processes

C’l and C2, both on level i– 1, and terminates.

Finally, in the case that Level = 1 and

the internal edge was the one selected, the

CHECK sets GetMsg to Ready, allowing a

new packet to be entered into the network,

and terminates.

The processes TOKEN(T) and

CHECK(C) are described Figures 2 and 3.

The code for these algorithms is described

using processes (or “tokens”), that can mi-

grate over an edge, carrying their variables

along with them [KKM85]. Such a process

is executed at a processor until it either mi-

grates, or executes a Wait instruction. This

description has an efficient translation to any

standard description format.

3

Let

the

Analysis

us define some basic concepts regarding

status of the system. It is convenient

to view each vertex v of the graph as com-

posed of 6 + 1 distinct layer vertices V[”l, viol,

, V[bl, one for each level. Vertex V[il, for i >. . .

0, consists of the buffers Ai, B~ and E~ and

the queue InQueue(i). (Vertex V[”l represents

the external entity in v that provides v with

the packets it must send.) The edges adja-

cent to v are duplicated for each layer V[il. We

think of the edges as directed (i.e., each edge

connecting the vertices u and v is represented

by directed edges (uiil, V[il) and (vI;], U[il) for

1 ~ i ~ 6. There is also a directed debt edge

leading from V[il to V[i-ll for every i. More-

over, in order to represent the Debt configu-

ration at any given moment, we consider the

directed Multigraph obtained by taking each

edge (u[i], V[il) with multiplicity DebtU(v, i).

I.e., at any given time there are DebtU(v, i)

parallel edges going from the i’th layer of u

to the i’th layer of v. (Similarly, the num-

ber of internal edges from u(ayeri + 1 to u[~l

is the value of IntDebt(i).) We term these

edges debt edges. Also, if Get_Msg = Waiting

then there is an internal debt edge from u[ll

to U[”l. (This represents the event in which

a packet was introduced into the network in

vertex u). We refer to the resulting directed

graph as the layered graph ~.

A trace tree is a directed tree in the lay-

ered graph G with the following properties.

A leaf is a vertex who sent a packet and its

Get-Msg is still Waiting. The edges of the tree

point downwards towards the leaves. The

out-degree of each vertex in the tree is one,

and its it-degree is 1 or 2. A leaf or a vertex

with in-degree 2 is called a merge vertex. The

vertices of the tree are of the following kinds.

The leaves are all of layer O. A non-merge

vertex is of the same level as its parent (i.e.,

they are V{il and Ulil for some i). For a merge

vertex of level i, its parent is of level i + 1. For

each non-leaf merge vertex two of its buffers

are in status Locked and one of them may

contain a token in status Locked. The root

of the tree is a node v~l containing a debtor

of the appropriate level. By this we mean ei-

ther a token in status Active or Stuck, or a

CHECK process, of level j.

We say that a certain trace tree covers the

debt of a token T in status Locked currently

residing in a buffer of the layer vertex V[il if

the vertex V[il occurs in the tree as a merge

vertex. Similarly, a certain debt tree charges

the debtor D (which, again, may be a token

in status Active or Stuck or a check) cur-

rently residing in a layer vertex vl~l if this

vertex occurs as the root of the tree.

A trace cover is a collection of trace trees

in the graph G with the following properties.

183

Process TO.KE~(p, Packet), /“ deliver Packet on path p “/

Level- 1,

Temp t self

Wait until Get_Msg = heady

Getlsg + waiting /“ initially Ready “/

& t (p, Packet, Active)

While Temp # Dest(p) do :

if Status # Active then wait until status = Active

Traverse the edge from Temp to z = iVezi(p, Temp).

If ZX, X G {ALevel, BL.vel}, Status(X) = Empty, InQueue(Level) = Empty then do :

X+T

DebtZ(Temp, Level) - Debtz(Temp, Level) + 1

Traverse back to Temp.

Buffer t (0,0, Empty) /“ the packet has been forwarded*/

Traverse to z = Next(p, Temp) /“ ready to continue moving forward */

Else do : /* no available buffer “/

put {(Temp, Buffer)} in InQueue(Level)

Traverse back to Temp.

If ~yj y ~ {ALevel, &eve~, &eve~}, Y # Buffer, StatUS(Y) = StLIC~ then do :

&,.~+1 + Buffer

Status(Buffer) t Locked

status(Y) + Locked

Level t Level+ 1

Set IntDebtse~~Level) t IntDebtse~~Level) + 1

Else Status(Buffer) + Stuck.

End_while /“ reached destination*/

Deliver Packet to the local processor.

Create a check process C = (Level).

Set Status(Buffer(T)) + Empty.

Figure 2: Process TOKEN

184

process C~ECl((Level):

/“ process has form (Level) */

While IntDebt~e~~Level) >0

Orthere exists anedge(sel{ u)suchthat Debtsel~u, Level) >Odo :

If the next edge in the round robin order of Level is not the internal edge then

Debtsej~u,Level) +Debt~e~~u,Level) –1

Traverse tou.

Else /* internal edge is next */

If~X~ {ALevel–l, &evel-1, EL.v,l_l}, packet(X) +0, status(X)= Lockedthen do:
EL.vel + X /“ move to elevator buffer “/’

X t (0,0, Locked) /* empty and keep locked “/’

Status(EL.vel) t Active /“ Release token */’

Else /“ two Locked empty buffers at level Level – 1 ‘/’

If Level >1 then do :

Let X,Ybe the buffers in Level-l in Status Locked

Status(X),Status(Y) tEmpty.

Create two check processes Cl= (Level –l)and C2= (Level –1).

Set IntDebtse~~Level) t IntDebtse~~Level) – 1

Else /“ Level= 1’/

If GetJ4sg=lVaiting thendo

GetJ4sgt Ready

Terminate

End_while

Figure 3: Process CHECK.

185

1.

2.

3.

Every token T with status Locked has

exactly one trace tree covering its debt.

Every debtor D has exactly one trace

tree charging it.

Every debt edge is included in at most

one trace tree. (Recall that there may

be parallel debt edges between the same

vertices.)

Intuitively, a trace tree in which a buffer

is locked keeps trace of the token that locked

the buffer. However, since only the number

of tokens and checks passing at each level is

recorded (in the Debt variables), a check gen-

erated by a token on one tree may be used to

release another tree. Still, we can prove the

following invariant. (All proofs are omitted

from this extended abstract.)

Lemma 3.1 At any time during the execution

of the algorithm, there exists a trace cover for

the graph G. B

The trace trees already enable us to prove

that the algorithm is well-defined. This is

stated in Lemmas 3.2 and 3.4.

Lemma 3.2 For every token or check of level

z there are 2; vertices with Getllsg = Waiting.

I

Corollary 3.3 At no time does the algorithm

require a buffer of Level larger than 6.

Lemma 3.4 . At any time, if two tokens wish

to perform a merge operation at level i, then

the elevator buffer E;+l is Empty. I

A trace tree traces the route from a Locked

buffer to either a token or a check. However,

the token may be Stuck. We now extend the

directed Multigraph defined above to help us

trace the way from these Stuck tokens to a

non-Stuck token or to a check, or to a Stuck

token that will eventually be released. (Note

that this is only an auxiliary definition;

algorithm does not “know” which token

the

will

eventually be released.) This will enable us

to show later that every Stuck token and ev-

ery Locked buffer are eventually released. For

that purpose let us add to the layered graph

a directed Stuck edge from u to v at level i

if there is a token Stuck at v in level i trying

to get into u.

To prove the above fairness property, it suf-

fices to show that every directed edge in the

layered graph, leading to (a vertex in the lay-

ered graph with) a Locked or Stuck buffer is

eventually deleted. Note that an edge that

from some time on is never deleted, under-

goes only a finite number of deletions and in-

sertions throughout the execution. Consider

all the edges that are inserted and deleted

only a finite number of times. (The last event

of such an edge may be a deletion). Let us

call such edges eventually stable edges. Out of

these edges, let the permanent edges be those

which from some time on are never deleted.

Let T be the time after the last event (ei-

ther deletion or insertion) happening to any

eventually stable edge. Let a return route

at time 2’ be a directed path in the layered

graph from a non-Stuck debtor to (a vertex

in the layered graph with) a Locked or Stuck

buffer, such that a permanent Stuck edge can

be used only if the previous edge is one from

some U[il to U[i–ll. (Again, we shall not need

to know which edge is permanent.)

Lemma 3.5 At any time, there is a return

route (on the layered graph) to every packet

from a debtor who is not Stuck, or from a Stuck

edge which is not permanent. I

Lemma 3.5 is used in the proof of the fol-

lowing desired result:

Lemma 3.6 Every edge leading to a vertex

(in the layered graph) with a Locked or Stuck

buffer is eventually deleted. B

To conclude the correctness part, recall

that a vertex that introduced a packet into

the network is prevented from introducing

186

another until its Get_Msg equals Ready.

Lemma 3.7 Eventually, the value of every

Get-Msg variable becomes Ready. ~

Let us now analyze the performance of the

algorithm. It is easy to see that the memory

requirement is logarithmic in n. As for the

communicant ion overhead, we can show

Lemma 3.8 The communication overhead of

the hierarchical algorithm is 0(l). 1

The algorithm as described so far uses only

the FIFO discipline locally in order to de-

cide which packet to advance next. Thus

the time in the worst case is the same as in

[JS89, MS80], namely, exponential. However,

with the introduction of additional (more

global) scheduling decisions we can prove the

following:

Theorem 3.9 The algorithm can be extended

so that with the same communication overhead

and number of buffers, every packet is delivered

within time 0(rz2 logn) of the time it entered

the network. H

Acknowledgments

We are grateful to Israel Cidon and Moshe

Sidi for working with us in the early stages

of this research and

helpful discussions.

References

for many stimulating and

[AAG87]

[AM86]

Y. Afek, B. Awerbuch, and E. Gafni.

Applying static network protocols to

dynamic networks. In Proc. 28th

IEEE Sgmp. on Foundations of Com-

puter Science, pages 358-370. IEEE,

October 1987.

B. Awerbuch and S. Micali. Dy-

namic deadlock resolution protocols.

In Proc. 27th IEEE Symp. on Foun-

dations of Computer Science. IEEE,

November 1986.

[BT84]

[CJS87]

[CM82]

[G81]

[GHS83]

Gop84]

JS89]

G. Bracha and S. Toueg. A dis-

tributed algorithm for generalized

deadlock detection. In Proc. 3~~d

ACM Symp. on Principles of Dis-

tributed Computing, pages 285-301.

ACM, August 1984.

I. Cidon, J. Jaffe, and M. Sidi. Dis-

tributed store-and forward deadlock

detection and resolution algorithms.

IEEE Trans. on Commun., COM[-

35:1139-1145, May 1987.

K.M. Chandi and J. Misra. A dis-

tributed algorithm for detecting re-

source deadlocks in distributed sys-

tems. In Proc. 1st ACM Symp. on

Principles of Distributed Computing,

pages 157–164. ACM, August 1982.

K.D. Gunther. Prevention of dead-

locks in packet-switched data trans-

port systems. IEEE Trans. on Com,-

mun., COM-29:512–524, May 1981.

R. G. Gallager, P.A. Humblet, and

P.M. Spira. A distributed algorithm

for minimum weight spanning trees.

ACM Trans. on Programming Lang.

and Syst., 5:66–77, 1983.

1.S. Gopal. Prevention of store-and-

forward deadlock in computer net-

works. Research Report RC-10677,

IBM Yorktown, August 1984.

J.M. Jaffe and M. Sidi. Distributed

deadlock resolution in store-and for-

ward networks. Algorithmic, 4, 1989.

[KKM85] E. Korach, S. Kutten, and S. Moran.

A modular technique for the design of

efficient distributed leader finding al-

gorithms. In Proc. dth ACM Symp.

on Principles of Distributed Comput-

ing. ACM, August 1985.

[Mar82] James Martin, SIVA: IBM’s iVetwork-

ing Solution, Prantice

wood Cliffs, NJ, 1982

Hall, Engle

187

[MM79]

[MM84]

[MS80]

[Obe82]

[TU81]

D. A. Menascoe and R. Muntz. Lock-

ing and deadlock detection in dis-

tributed databases. IEEE Trans. on

Software Eng., SE-5:195-202, 1979.

D.P. Mitchell and M. Merritt. A dis-

tributed algorithm for deadlock de-

tection and resolution. In %oc. t?rd

ACM Symp. on Principles of Dis-

tributed Computing, pages 282-284.

ACM, August 1984.

P.M. Merlin and P.J. Schweitzer.

Deadlock avoidance in store-and-

forward networks i: Store and forward

deadlock. IEEE Tmns. on Commun.,

COM-28:345-352, March 1980.

R. Obermarck. Distributed deadlock

detection algorithm. ACM Trans. on

Database Syst., 7:187-208,1982.

S. Toueg and J.D. Unman. Deadlock-

free packet switching networks, SIAM

J. on Comput., 10:594-611, 1981.

188

